WELCOME!

Who am I?
Who am I?

- Bruce Desmarais; Red Sox Fan and PhD student in the UNC Poli Sci Dept.
Who am I?

- Bruce Desmarais; Red Sox Fan and PhD student in the UNC Poli Sci Dept.
- Extensive experience with matrix algebra, simulation and statistical computing in Matlab and other software/languages
Welcome!

Who am I?

- Bruce Desmarais; Red Sox Fan and PhD student in the UNC Poli Sci Dept.
- Extensive experience with matrix algebra, simulation and statistical computing in Matlab and other software/languages
- No formal training in the instruction of Matlab (comments/suggestions will be much appreciated)

What will we cover?
Welcome!

Who am I?

- Bruce Desmarais; Red Sox Fan and PhD student in the UNC Poli Sci Dept.
- Extensive experience with matrix algebra, simulation and statistical computing in Matlab and other software/languages
- No formal training in the instruction of Matlab (comments/suggestions will be much appreciated)

What will we cover?

- Basic System design and Simulation in Simulink
Who am I?

- Bruce Desmarais; Red Sox Fan and PhD student in the UNC Poli Sci Dept.
- Extensive experience with matrix algebra, simulation and statistical computing in Matlab and other software/languages
- No formal training in the instruction of Matlab (comments/suggestions will be much appreciated)

What will we cover?

- Basic System design and Simulation in Simulink
- Manipulation of Simulink Model files
Welcome!

Who am I?

- Bruce Desmarais; Red Sox Fan and PhD student in the UNC Poli Sci Dept.
- Extensive experience with matrix algebra, simulation and statistical computing in Matlab and other software/languages
- No formal training in the instruction of Matlab (comments/suggestions will be much appreciated)

What will we cover?

- Basic System design and Simulation in Simulink
- Manipulation of Simulink Model files
- Simulink Interface with Matlab
Welcome!

Who am I?

- Bruce Desmarais; Red Sox Fan and PhD student in the UNC Poli Sci Dept.
- Extensive experience with matrix algebra, simulation and statistical computing in Matlab and other software/languages
- No formal training in the instruction of Matlab (comments/suggestions will be much appreciated)

What will we cover?

- Basic System design and Simulation in Simulink
- Manipulation of Simulink Model files
- Simulink Interface with Matlab
- Examples
What is Simulink?
What is Simulink?

- Graphical extension to MATLAB for modeling and simulation of systems; Similar to Winbugs
What is Simulink?

- Graphical extension to MATLAB for modeling and simulation of systems; Similar to Winbugs
- Systems drawn on screen as block diagrams
What is Simulink?

- Graphical extension to MATLAB for modeling and simulation of systems; Similar to Winbugs
- Systems drawn on screen as block diagrams
- Integrated with MATLAB
Introduction

What is Simulink?

- Graphical extension to MATLAB for modeling and simulation of systems; Similar to Winbugs
- Systems drawn on screen as block diagrams
- Integrated with MATLAB
- Combines intuitive graphical-user interface with excellent speed and storage capabilities
What is Simulink?

- Graphical extension to MATLAB for modeling and simulation of systems; Similar to Winbugs
- Systems drawn on screen as block diagrams
- Integrated with MATLAB
- Combines intuitive graphical-user interface with excellent speed and storage capabilities
- Is free to you!! (or included in tuition; however you want to look at it)
New Model...First Steps

- Open Matlab
Open Matlab

Type simulink
New Model...First Steps

- Open Matlab
- Type `simulink`
- Simulink library browser pops up
New Model...First Steps

- Open Matlab
- Type `simulink`
- Simulink library browser pops up
- Start a new model file `Ctrl + N`
NEW MODEL...FIRST STEPS

- Open Matlab
- Type `simulink`
- Simulink library browser pops up
- Start a new model file `Ctrl + N`
- The blank file is where model will be built...save it
Open Matlab

Type `simulink`

Simulink library browser pops up

Start a new model file `Ctrl + N`

The blank file is where model will be built...save it

Libraries contain building blocks
Model is a collection of blocks connected by lines. There are a number of different classes of blocks:
Blocks

Model is a collection of blocks connected by lines. There are a number of different classes of blocks:

- Sources: Used to generate signals
Model is a collection of blocks connected by lines. There are a number of different classes of blocks:

- Sources: Used to generate signals
- Sinks: Used to output
Model is a collection of blocks connected by lines. There are a number of different classes of blocks:

- **Sources**: Used to generate signals
- **Sinks**: Used to output
- **Discrete**: Linear, discrete-time system elements (transfer-functions)
Blocks

Model is a collection of blocks connected by lines. There are a number of different classes of blocks:

- **Sources**: Used to generate signals
- **Sinks**: Used to output
- **Discrete**: Linear, discrete-time system elements (transfer-functions)
- **Nonlinear**: Arbitrary nonlinear operators
Model is a collection of blocks connected by lines. There are a number of different classes of blocks:

- **Sources**: Used to generate signals
- **Sinks**: Used to output
- **Discrete**: Linear, discrete-time system elements (transfer-functions)
- **Nonlinear**: Arbitrary nonlinear operators
- **Connections**: Multiplex, Demultiplex
Model is a collection of blocks connected by lines. There are a number of different classes of blocks:

- **Sources:** Used to generate signals
- **Sinks:** Used to output
- **Discrete:** Linear, discrete-time system elements (transfer-functions)
- **Nonlinear:** Arbitrary nonlinear operators
- **Connections:** Multiplex, Demultiplex
Model is a collection of blocks connected by lines. There are a number of different classes of blocks:

- **Sources**: Used to generate signals
- **Sinks**: Used to output
- **Discrete**: Linear, discrete-time system elements (transfer-functions)
- **Nonlinear**: Arbitrary nonlinear operators
- **Connections**: Multiplex, Demultiplex

Blocks have input and output terminals indicated by wedges pointing towards and away from the block respectively. Lines transmit signals from input to output.
== Let's Build Our First Model ==

- Click on Source

- Drag the random box into the left of the model. Produces a gaussian signal with set parameters.

- Return to library main, click on User Defined.

- Drag the Matlab Fcn into the model.

- Return to library main, click on Sinks.

- Drag the Scope into the model, connect all.
Let's build our first model

- Click on Source
- Drag the random box into the left of the model
L E T S B U I L D O U R F I R S T M O D E L

- Click on Source
- Drag the random box into the left of the model
- Produces a gaussian signal with set parameters.
Let's build our first model

- Click on Source
- Drag the `random` box into the left of the model
- Produces a gaussian signal with set parameters.
- Return to library main, click on `User Defined`
LET'S BUILD OUR FIRST MODEL

- Click on Source
- Drag the random box into the left of the model
- Produces a gaussian signal with set parameters.
- Return to library main, click on User Defined
- Drag the Matlab Fcn into the model
Let's build our first model

- Click on Source
- Drag the random box into the left of the model
- Produces a gaussian signal with set parameters.
- Return to library main, click on User Defined
- Drag the Matlab Fcn into the model
- Return to library main, click on Sinks
Let's build our first model

- Click on Source
- Drag the random box into the left of the model
- Produces a gaussian signal with set parameters.
- Return to library main, click on User Defined
- Drag the MatlabFcn into the model
- Return to library main, click on Sinks
- Drag Scope into the model, connect all
Blocks have many sorts of parameters
Block Manipulation

- Blocks have many sorts of parameters
- To set a block’s parameters, right-click on a block and select the parameters option
Blocks have many sorts of parameters

To set a block’s parameters, right-click on a block and select the parameters option

Our gaussian signal has mean and variance and seed parameters. Right click and set them to 0.5 and 1.5 respectively, be sure to note or set seed in rng’s
Block Manipulation

- Blocks have many sorts of parameters.
- To set a block’s parameters, right-click on a block and select the parameters option.
- Our gaussian signal has mean and variance and seed parameters. Right click and set them to 0.5 and 1.5 respectively, be sure to note or set seed in rng’s.
- The Matlab Function takes a function as a parameter with vector-valued argument u. Lets set it to $sin(u) + 1$.
Block Manipulation

- Blocks have many sorts of parameters
- To set a block’s parameters, right-click on a block and select the parameters option
- Our gaussian signal has mean and variance and seed parameters. Right click and set them to 0.5 and 1.5 respectively, be sure to note or set seed in rng’s
- The Matlab Function takes a function as a parameter with vector-valued argument u. Let’s set it to $\sin(u) + 1$.
- Time arguments tell blocks ‘when’ to act during a simulation
Block Manipulation

- Blocks have many sorts of parameters.
- To set a block’s parameters, right-click on a block and select the parameters option.
- Our gaussian signal has mean and variance and seed parameters. Right click and set them to 0.5 and 1.5 respectively, be sure to note or set seed in rng’s.
- The Matlab Function takes a function as a parameter with vector-valued argument \(u \). Lets set it to \(\sin(u) + 1 \).
- Time arguments tell blocks ‘when’ to act during a simulation.
- The scope box.
Open a useful monitor of the simulation by double clicking on the scope box.

Now lets run the simulation...

First set the simulation parameters typing Ctrl + E.

Many options; lets set the time from 0 to 25.

Now click on Simulation, Start.
A First Run

1. Open a useful monitor of the simulation by double clicking on the scope box.
A First Run

1. Open a useful monitor of the simulation by double clicking on the scope box
2. Now let's run the simulation...
1. Open a useful monitor of the simulation by double clicking on the scope box.

2. Now let's run the simulation...

3. First set the simulation parameters typing Ctrl + E.
A First Run

1. Open a useful monitor of the simulation by double clicking on the scope box
2. Now lets run the simulation...
3. First set the simulation parameters typing Ctrl + E
4. Many options; lets set the time from 0 to 25
A FIRST RUN

1. Open a useful monitor of the simulation by double clicking on the scope box
2. Now lets run the simulation...
3. First set the simulation parameters typing Ctrl + E
4. Many options; lets set the time from 0 to 25
5. Now click on Simulation, Start
Output to Matlab

We often want the simulation data in Matlab.

Go to the library main, click on sinks. Drag `simout` into the model and connect before scope. Right click and call the object output. Returns a Matlab structure... run the sim and let's take a look.
1 We often want the simulation data in Matlab
Output to Matlab

1. We often want the simulation data in Matlab
2. Go to the library main, click on sinks
Output to Matlab

1. We often want the simulation data in Matlab
2. Go to the library main, click on sinks
3. Drag simout into the model and connect before scope
Output to Matlab

1. We often want the simulation data in Matlab
2. Go to the library main, click on sinks
3. Drag simout into the model and connect before scope
4. Right click and call the object output
Output to Matlab

1. We often want the simulation data in Matlab.
2. Go to the library main, click on sinks.
3. Drag simout into the model and connect before scope.
4. Right click and call the object output.
5. Returns a matlab structure...run the sim and let's take a look.
Output More to Matlab

Suppose we want to get the signal at different points in the simulation.

Drag another simout onto the screen.

Let's grab the original gaussian signal.

Name the second simout output.

Connect to the line between the signal and the function.. run the simulation.
Suppose we want to get the signal at different points in the simulation.

1. Drag another `simout` onto the screen.

2. Let's grab the original gaussian signal.

3. Name the second `simout` output.

4. Connect to the line between the signal and the function. Run the simulation.
Output More to Matlab

1. Suppose we want to get the signal at different points in the simulation
2. Drag another simout onto the screen
Output More to Matlab

1. Suppose we want to get the signal at different points in the simulation
2. Drag another simout onto the screen
3. Let's grab the original gaussian signal
Output More to Matlab

1. Suppose we want to get the signal at different points in the simulation
2. Drag another simout onto the screen
3. Let's grab the original gaussian signal
4. Name the second simout output
Suppose we want to get the signal at different points in the simulation

Drag another simout onto the screen

Let's grab the original gaussian signal

Name the second simout output

Connect to the line between the signal and the function..run the simulation
The best way to assure your simulated data is not lost is to save it immediately. Go into sinks again and select an untitled.mat file. Right click to set file extension...will write to working directory if no extension is provided. The signal can be saved in different times along the model path. Somewhat inconvenient, every time you want a new position on the path, you need a new file.
Output to File

1. The best way to assure your simulated data is not lost is to save it immediately.
Output to File

1. The best way to assure your simulated data is not lost is to save it immediately.

2. Go into sinks again and select a untitled.mat file.
1. The best way to assure your simulated data is not lost is to save it immediately.

2. Go into sinks again and select a untitled.mat file.

3. Right click to set file extension...will write to working directory if no extension is provided.
Output to File

1. The best way to assure your simulated data is not lost is to save it immediately.
2. Go into sinks again and select a untitled.mat file.
3. Right click to set file extension...will write to working directory if no extension is provided.
4. The signal can be saved in different times along the model path.
The best way to assure your simulated data is not lost is to save it immediately.

Go into sinks again and select a untitled.mat file.

Right click to set file extension...will write to working directory if no extension is provided.

The signal can be saved in different times along the model path.

Somewhat inconvenient, every time you want a new position on the path, you need a new file.
There are many reasons we could want to use data from the matlab workspace
There are many reasons we could want to use data from the matlab workspace

1. We may want to use data in memory rather than generate it.
There are many reasons we could want to use data from the matlab workspace

1. We may want to use data in memory rather than generate it
2. It may be useful to use real-world data in the model.
There are many reasons we could want to use data from the matlab workspace

1. We may want to use data in memory rather than generate it
2. It may be useful to use real-world data in the model.
3. It may be difficult to use specific generators/rng streams in the simulation
Using Data From Matlab Workspace I

There are many reasons we could want to use data from the matlab workspace

1. We may want to use data in memory rather than generate it.
2. It may be useful to use real-world data in the model.
3. It may be difficult to use specific generators/rng streams in the simulation.
4. We could use the inputs/outputs of previous simulations as inputs to the current simulation.
All of the objects in the workspace are available
Using Data From Matlab Workspace II

All of the objects in the workspace are available

1 First, let's put something in the workspace, issue the command
 \[x = [1:100; \text{rand}(1,100)]' \]
All of the objects in the workspace are available

1. First, let’s put something in the workspace, issue the command
 \[x = [1:100; \text{rand}(1,100)]’ \]

2. Creates a 100x2 matrix with the first column indicating the time stamp
Using Data From Matlab Workspace II

All of the objects in the workspace are available

1. First, let's put something in the workspace, issue the command
 \[x = [1:100; \text{rand}(1,100)]' \]

2. Creates a 100x2 matrix with the first column indicating the time stamp

3. Right Click and delete the random generator
Using Data From Matlab Workspace II

All of the objects in the workspace are available

1. First, let's put something in the workspace, issue the command
 \[x = [1:100; \text{rand}(1,100)]' \]

2. Creates a 100x2 matrix with the first column indicating the time stamp

3. Right Click and delete the random generator

4. Now go to Sources and drag simin
All of the objects in the workspace are available

1. First, let's put something in the workspace, issue the command
 \[x = [1:100; \text{rand}(1,100)]' \]

2. Creates a 100x2 matrix with the first column indicating the
time stamp

3. Right Click and delete the random generator

4. Now go to Sources and drag simin

5. Right click on simin and tell it to use \(x \)
Using Data From Matlab Workspace II

All of the objects in the workspace are available

1. First, let's put something in the workspace, issue the command
 \[x = [1:100; \text{rand}(1,100)]' \]

2. Creates a 100x2 matrix with the first column indicating the
time stamp

3. Right Click and delete the random generator

4. Now go to Sources and drag simin

5. Right click on simin and tell it to use x

6. Now let's set the simulation time to 0-250 and run it
All of the objects in the workspace are available

1. First, let's put something in the workspace, issue the command:
 \[x = [1:100; \text{rand}(1,100)]' \]

2. Creates a 100x2 matrix with the first column indicating the time stamp.

3. Right Click and delete the random generator.

4. Now go to Sources and drag simin.

5. Right click on simin and tell it to use x.

6. Now let's set the simulation time to 0-250 and run it.

7. Notice anything odd?...extrapolation.
Scope Plot of Multiple Characteristics

It is easy to visualize how things move together
Scope Plot of Multiple Characteristics

It is easy to visualize how things move together

1. Go to search, enter mux
It is easy to visualize how things move together

1. Go to search, enter \texttt{mux}

2. This block concatenates multiple signals into larger vector-valued signals
Simulink Basics

Scope Plot of Multiple Characteristics

It is easy to visualize how things move together

1. Go to search, enter mux
2. This block concatenates multiple signals into larger vector-valued signals
3. Drag to the graphic
It is easy to visualize how things move together

1. Go to search, enter mux
2. This block concatenates multiple signals into larger vector-valued signals
3. Drag to the graphic
4. Connect the input and output to the two mux input wedges
It is easy to visualize how things move together

1. Go to search, enter `mux`
2. This block concatenates multiple signals into larger vector-valued signals
3. Drag to the graphic
4. Connect the input and output to the two `mux` input wedges
5. Run the simulation and observe
It is easy to visualize how things move together

1. Go to search, enter `mux`
2. This block concatenates multiple signals into larger vector-valued signals
3. Drag to the graphic
4. Connect the input and output to the two `mux` input wedges
5. Run the simulation and observe
6. Look at the Scope
Scope Plot of Multiple Characteristics

It is easy to visualize how things move together

1. Go to search, enter mux
2. This block concatenates multiple signals into larger vector-valued signals
3. Drag to the graphic
4. Connect the input and output to the two mux input wedges
5. Run the simulation and observe
6. Look at the Scope
7. Which is which? We need a legend.
An Alternative Multiple Characteristic Plot

It is easy to visualize how things move together..again
It is easy to visualize how things move together..again

1. Right click in model area and choose Signal & Scope manager
An Alternative Multiple Characteristic Plot

It is easy to visualize how things move together...again

1. Right click in model area and choose Signal & Scope manager
2. Under viewers expand Simulink
It is easy to visualize how things move together..again

1. Right click in model area and choose Signal & Scope manager
2. Under viewers expand Simulink
3. Double Click Scope
It is easy to visualize how things move together..again

1. Right click in model area and choose Signal & Scope manager
2. Under viewers expand Simulink
3. Double Click Scope
4. Right click on the scope and choose Edit Signal Connections
It is easy to visualize how things move together...again

1. Right click in model area and choose Signal & Scope manager
2. Under viewers expand Simulink
3. Double Click Scope
4. Right click on the scope and choose Edit Signal Connections
5. Select the inputs and outputs then close.
An Alternative Multiple Characteristic Plot

It is easy to visualize how things move together again.

1. Right click in model area and choose Signal & Scope manager.
2. Under viewers expand Simulink.
3. Double Click Scope.
4. Right click on the scope and choose Edit Signal Connections.
5. Select the inputs and outputs then close.
6. Run the simulation and double click on the glasses.
An Alternative Multiple Characteristic Plot

It is easy to visualize how things move together...again

1. Right click in model area and choose Signal & Scope manager
2. Under viewers expand Simulink
3. Double Click Scope
4. Right click on the scope and choose Edit Signal Connections
5. Select the inputs and outputs then close.
6. Run the simulation and double click on the glasses
7. Now right click on the plot space and select legend to get a legend