A Light-Independent Magnetic Compass in the Leatherback Sea Turtle

KENNETH J. LOHMANN AND CATHERINE M. FITTINGHOFF LOHMANN
Department of Biology, Coker Hall, CB-3280, University of North Carolina, Chapel Hill, North Carolina 27599

Diverse animals can orient to the earth’s magnetic field (1-6), but the mechanism or mechanisms underlying magnetic field detection have not been determined. Behavioral (7-9) and neurophysiological (10-12) results suggest that the transduction process underlying magnetic compass orientation in vertebrates is light-dependent, a finding consistent with theoretical models proposing that magnetoreception involves a modulation of the response of retinal photoreceptors to light (13, 14). We report, however, that leatherback sea turtle (Dermochelys coriacea) hatchlings orient to the geomagnetic field in complete darkness. Thus, light-dependence is not a universal feature of vertebrate magnetic compasses.

Immediately after emerging from underground nests on oceanic beaches, sea turtle hatchlings enter the sea and swim toward the open ocean in a migration lasting several days. Hatchlings leaving the east coast of Florida quickly establish easterly courses that lead them away from land and toward the Gulf Stream current (15-17). Previous laboratory experiments have demonstrated that hatchling loggerhead turtles (Caretta caretta) will orient to the earth’s magnetic field (2). To determine whether leatherbacks have a similar ability and whether the transduction mechanism underlying magnetic compass orientation in sea turtles is dependent on light, we investigated the orientation of hatchling leatherbacks swimming in darkness.

Hatchling leatherback sea turtles were obtained from nests deposited on beaches in the vicinity of Fort Pierce, Florida. Nests were examined daily. When a depression formed in the sand above a nest (indicating that the eggs had hatched and that emergence would probably occur that night), several hatchlings were removed, placed into a darkened styrofoam cooler, and transported to the laboratory. Orientation was assessed in a circular water-filled arena surrounded by a Rubens cube coil (18) (Fig. 1) that could be used to reverse the direction of the horizontal component of the ambient magnetic field. Experiments were conducted in a light-tight room between sundown and sunrise, the time when most hatchlings normally enter the sea (19, 20). To eliminate the light emanating from computers and power supplies, all electronic equipment was removed from the room. As an additional precaution against unexpected light sources (e.g., bioluminescence), an observer periodically sat silently beside the coil while experiments were in progress. Following dark-adaptation of one hour or longer, three different observers were unable to perceive any light in the room despite systematic searches and efforts to elicit bioluminescent flashes by stirring the water.

While in darkness, hatchling leatherbacks tested in the earth’s magnetic field were significantly oriented in an eastward direction (Fig. 2a). In contrast, hatchlings tested in darkness under reversed field conditions oriented in approximately the opposite direction (Fig. 2b). The two distributions are significantly different, indicating that the ambient magnetic field influenced the orientation of hatchling leatherbacks swimming in darkness.

These results demonstrate that leatherbacks are able to detect the geomagnetic field in the absence of visible light. We conclude that the transduction mechanism underlying magnetic compass orientation is not light-dependent in all vertebrate species.

The magnetic compass of sea turtles could rely on a mechanism different from that used by other vertebrates. The functional characteristics of the loggerhead turtle compass and those of magnetic compasses in two other vertebrate classes, however, appear identical. Like the magnetic compass of birds (5) and of shoreward-orienting newts (4), the loggerhead compass is axial and based on
accuracy of 2°. Thus, the orientation of turtles swimming in darkness could easily be pulled clockwise or counterclockwise by a swimming lever arm. The lever arm was free to rotate within the horizontal plane and could thus track the direction toward which the hatchling swam. The central rheostat was wired to a computer in an adjacent room, which recorded the orientation of the turtle every 30 s with an accuracy of $\pm 2^\circ$. Thus, the orientation of turtles swimming in darkness could be tracked.

Methods: Detailed descriptions of methods are provided in ref #2. Each hatchling was tested once on either its first, second, or third night of captivity. Each trial began in the earth's field (coil off) with a dim light hanging in magnetic east so that hatchlings quickly established a course toward the light (2). The light was provided because hatchlings emerging from their nests at night under natural conditions find the sea using light cues associated with the ocean surface (25); light reflected from the ocean may also provide a directional cue necessary for hatchlings to initiate a seaward course (2, 26). After one hour, the light was turned off and the turtles were permitted to swim in darkness either in the unaltered magnetic field (i.e., the coil remained off) or in a reversed field (i.e., the coil was turned on 10–20 s after the light was turned off). Ten minutes after the light was turned off, the computer began recording the orientation of each hatchling at 30-s intervals. Thus, orientation data were collected only while the turtles were swimming in darkness. Between trials, we periodically altered the position of the power supply relative to the arena to reduce the chance that subtle sounds or vibrations could serve as an orientation cue; such positional changes, however, had no discernible effect on orientation.

Field line inclination, rather than on field polarity (21). The possibility therefore exists that all three compasses are based on a common underlying mechanism.

One hypothesis for magnetic field detection in vertebrates proposes that particles of the mineral magnetite transduce geomagnetic stimuli to the nervous system (22). Although magnetite particles have been detected in cephalic tissues of sea turtles (23) and in numerous other animals known to orient magnetically (22), no direct neurophysiological evidence has been obtained demonstrating a link between magnetite and magnetic field detection in any multicellular organism.

A second hypothesis of magnetoreception has been proposed for elasmobranch fishes. These animals possess sensitive electroreceptors that may endow them with a magnetic compass sense based on electromagnetic induction (24). Because electroreceptors have not been found in reptiles, however, an induction-based mechanism appears unlikely for sea turtles. Moreover, the elasmobranch induction hypothesis requires consistent movement through the earth's magnetic field, yet hatchlings successfully oriented magnetically while tethered and nearly stationary (Fig. 1).

A third hypothesis proposes that magnetoreception occurs in photoreceptors through a transduction process requiring light (7, 13, 14). Our results demonstrate that light is not necessary for magnetic orientation in marine turtles. The results are therefore not consistent with current models of light-dependent magnetoreception. Further research will be required to determine whether the light-independent magnetic compass of sea turtles relies on different
receptors than the apparently light-dependent magnetic compasses of birds (5, 9) and newts (7), or whether all three compasses in fact share a common underlying mechanism.

Acknowledgments

We thank Jay Callaway for developing the data acquisition software, Mike Salmon and Jeanette Wyneken for discussions of experimental protocols, and Erik Martin and Robert Ernest for assistance in locating leatherback turtle nests. The work was supported by NSF grants IBN-9120338 and BNS-87-07173. Endangered species research was authorized under Florida DNR special permit TP 073.

Literature Cited