Variants of Arnold’s Stability Results for 2D Euler Equations

Michael Taylor

Abstract. We establish variants of stability estimates in norms somewhat stronger than the H^1-norm, under Arnold’s stability hypotheses on steady solutions to the Euler equations for fluid flow on planar domains.

1. Introduction

Let Ω be a smoothly bounded planar region and $u^\varepsilon(t, x)$ solutions to Euler equations on $\mathbb{R} \times \Omega$,

(1.1) \[\frac{\partial}{\partial t} u^\varepsilon + \nabla u^\varepsilon \cdot u^\varepsilon = \nabla q^\varepsilon, \quad \text{div} u^\varepsilon = 0, \quad u^\varepsilon \|_{\partial \Omega}, \]

with initial data $u^\varepsilon(0) = u^\varepsilon_0$. Assume $u^0(t, x) \equiv u_s(x)$ is a smooth, steady solution to (1.1). V. Arnold found conditions on u_s guaranteeing the stability estimate

(1.2) \[\| u^\varepsilon(t) - u_s \|_{H^1(\Omega)} \leq C \| u^\varepsilon_0 - u_s \|_{H^1(\Omega)}, \quad \forall \, t \in \mathbb{R}, \]

at least as long as the right side of (1.2) is sufficiently small. The analysis was based on use of conserved quantities of the form

(1.3) \[H(u) = \int_{\Omega} \left[\frac{1}{2} |u|^2 + \varphi(\omega) \right] dA + \sum_j a_j \int_{\Gamma_j} u \cdot dx. \]

Here $\omega = \text{rot} \, u$ and Γ_j are the connected components of $\partial \Omega$. The function φ is obtained as follows. Set $\omega_s = \text{rot} \, u_s$ and let ψ_s denote the stream function of u_s, satisfying

(1.4) \[u_s = J \nabla \psi_s, \]

where J represents counterclockwise rotation by 90°. Assume

(1.5) \[\psi_s = \Phi(\omega_s), \]

with Φ smooth and monotone, and take φ such that

(1.6) \[\varphi'(\lambda) = \Phi(\lambda). \]

1AMS Subject Classification: 35Q35
Research partially supported by NSF grant DMS-0456861
We can assume φ' linear for λ large (positive or negative). It is then possible to specify $a_j \in \mathbb{R}$ such that u_s is a critical point of H. A calculation gives

$$(1.7) \quad D^2 H(u_s)(v, v) = \int_{\Omega} \left[|v|^2 + (\text{rot } v)^2 \varphi''(\omega_s) \right] dA,$$

or equivalently $D^2 H(u_s)(v, v) = Q(v, v)$, with

$$(1.8) \quad Q(v, v) = \|v\|_{L^2}^2 + (\text{rot } v, \Phi'(\omega_s) \text{ rot } v)_{L^2}.$$

For more details, see pp. 89–94 of [AK] or pp. 106–111 of [MP].

The form $D^2 H(u_s) = Q$ is positive definite on

$$(1.9) \quad V^1(\Omega) = \{ v \in H^1(\Omega, \mathbb{R}^2) : \text{div } v = 0, v\| \partial \Omega \},$$

provided

$$(1.10) \quad \Phi'(\omega_s) \geq K > 0 \text{ on } \Omega.$$

On the other hand, $D^2 H(u_s)$ is negative definite provided Ω is simply connected,

$$(1.11) \quad -\Phi'(\omega_s) \geq K > 0,$$

and, for some $\delta > 0$,

$$(1.12) \quad \|\nabla \psi\|_{L^2}^2 \leq (K - \delta)\|\Delta \psi\|_{L^2}^2, \quad \forall \psi \in H^2(\Omega) \cap H^1_0(\Omega).$$

In either such case, we have

$$(1.13) \quad |H(u^\varepsilon) - H(u_s)| \approx \|u^\varepsilon - u_s\|_{H^1}^2,$$

provided the right side of (1.13) is sufficiently small, and one has the stability result (1.2).

(We mention that $J \nabla \psi_s = -\nabla^\perp \psi_s$, as defined in (2.12) of [MP], which accounts for an apparent sign difference between (1.10)–(1.11) and the results stated there.)

Our goal in this paper is to estimate $u^\varepsilon(t) - u_s$ in stronger norms, under hypotheses on u_s that imply (1.2). In §2 we first establish a stability estimate for $\|u^\varepsilon(t) - u_s\|_{L^\infty}$, valid for all t, and then a slow growth estimate on $\|\text{rot } u^\varepsilon(t) - \text{rot } u_s\|_{L^\infty}$, i.e., growth at most linear in $|t|$, with rate roughly proportional to $\|u_0^\varepsilon - u_s\|_{H^1}$ (cf. (2.12)). We then deduce such a slow growth estimate for $u^\varepsilon(t) - u_s$, in the norm of the Zygmund space $C^1(\overline{\Omega})$, and also in a bmo_1-norm. These are slightly weaker than the $C^1(\overline{\Omega})$-norm, but nevertheless have implications for the flow generated by $u^\varepsilon(t)$. Going from estimates in these slightly weaker norms to a $C^1(\overline{\Omega})$-estimate seems to involve a “phase shift” in the stability estimates, which shoot up to exponentially increasing in time, and further shoot up to doubly exponentially increasing for higher norm estimates. These matters are discussed in §3.
One ingredient in the analysis in §2 is an estimate similar in flavor to estimates of Brezis, Gallouet, and Wainger ([BG], [BW]). We discuss such variants in Appendix A.

ACKNOWLEDGMENT. Thanks to an anonymous referee for insightful comments.

2. Stability/slow growth in stronger norms

As in §1, we assume that \(\Omega \) is a smoothly bounded planar region and \(u_s \in C^\infty(\overline{\Omega}, \mathbb{R}^2) \) is a stationary solution to (1.1), satisfying stability hypotheses that lead to (1.2). We assume \(u_0^\varepsilon \) has additional smoothness, and we desire to obtain long time estimates on \(u^\varepsilon(t) - u_s \) in other norms. Let us set \(\omega_s = \text{rot} u_s \) and

\[
\begin{align*}
 v^\varepsilon(t) &= u^\varepsilon(t) - u_s,
 v_0^\varepsilon &= u_0^\varepsilon - u_s,
 \omega^\varepsilon(t) &= \text{rot} u^\varepsilon(t),
 \Omega^\varepsilon(t) &= \omega^\varepsilon(t) - \omega_s.
\end{align*}
\]

We assume \(\|u_0^\varepsilon - u_s\|_{H^1} = \|v_0^\varepsilon\|_{H^1} \) is small enough that (1.2) holds. This implies

\[
\|\Omega^\varepsilon(t)\|_{L^2} \leq C_0\|v_0^\varepsilon\|_{H^1}, \quad \forall \ t \in \mathbb{R}.
\]

We next want to estimate the \(L^\infty \)-norm of \(v^\varepsilon(t) \). We use the following inequality:

\[
\|v^\varepsilon(t)\|_{L^\infty} \leq C \left(\log A \left(\frac{\|\Omega^\varepsilon\|_{L^\infty}}{\|\Omega^\varepsilon\|_{L^2}} \right) \right)^{1/2} \|\Omega^\varepsilon(t)\|_{L^2} + C\|v^\varepsilon(t)\|_{L^2}.
\]

This is similar to estimates arising in [BG] and [BW]. See Appendix A for a discussion of this estimate. Note that conservation of vorticity implies

\[
\|\Omega^\varepsilon(t)\|_{L^\infty} \leq \|\omega^\varepsilon(t)\|_{L^\infty} + \|\omega_s\|_{L^\infty} = \|\omega_0^\varepsilon\|_{L^\infty} + \|\omega_s\|_{L^\infty}.
\]

Note also that

\[
0 < \beta < \alpha, \ \beta \leq 1 \Rightarrow \left(\log \frac{\alpha}{\beta} \right)^{1/2} \beta \leq (\log \alpha)^{1/2} \beta + \left(\log \frac{1}{\beta} \right)^{1/2} \beta.
\]

Hence we have

\[
\|v^\varepsilon(t)\|_{L^\infty} \leq C \left[\log A \left[\|\omega_0^\varepsilon\|_{L^\infty} + \|\omega_s\|_{L^\infty} \right] \right]^{1/2} \|\Omega^\varepsilon(t)\|_{L^2} + C\|v^\varepsilon(t)\|_{L^2},
\]

provided \(\|\Omega^\varepsilon(t)\|_{L^2} \leq 1 \). We now assume

\[
C_0\|v_0^\varepsilon\|_{H^1} \leq e^{-1/2},
\]
which then fits into (2.2). Noting that

$$\left(\log \frac{1}{y}\right)^{1/2} y, \text{ for } 0 < y < e^{-1/2},$$

we deduce that

$$\|v^\varepsilon(t)\|_{L^\infty} \leq C \left(\log A \left[\|\omega_0^\varepsilon\|_{L^\infty} + \|\omega_s\|_{L^\infty}\right]\right)^{1/2} \|v_0^\varepsilon\|_{H^1} + C \left(\log \frac{1}{\|v_0^\varepsilon\|_{H^1}}\right)^{1/2} \|v_0^\varepsilon\|_{H^1},$$

for all $t \in \mathbb{R}$, noting that the term $C\|v^\varepsilon(t)\|_{L^2}$ in (2.6) can be absorbed.

The estimate (2.9) is complementary to but not stronger than (1.2). An advantage of (2.9) is that it gives us the ability to exploit the vorticity equation $\partial_t \omega^\varepsilon + \nabla u^\varepsilon \omega^\varepsilon = 0$ as follows. We have

$$\partial_t \Omega^\varepsilon + \nabla u^\varepsilon \Omega^\varepsilon = -\nabla v^\varepsilon \omega_s, \quad \Omega^\varepsilon(0) = \omega_0^\varepsilon - \omega_s,$$

so $\Omega^\varepsilon(t, x)$ is obtained by integrating $-\nabla v^\varepsilon \omega_s$ along integral curves of $\partial_t + \nabla u^\varepsilon$. Hence

$$\|\Omega^\varepsilon(t)\|_{L^\infty} \leq \|\Omega^\varepsilon(0)\|_{L^\infty} + C \sup_{0 \leq s \leq t} \|v^\varepsilon(s)\|_{L^\infty} \cdot t,$$

for $t > 0$, with an analogous estimate for $t < 0$, so bringing in (2.9) gives the following conclusion:

Proposition 2.1. Under hypotheses such as (1.10) or (1.11)–(1.12), and assuming the right side of (1.2) is sufficiently small, one has

$$\|\Omega^\varepsilon(t)\|_{L^\infty} \leq \|\omega_0^\varepsilon - \omega_s\|_{L^\infty} + CK(u_0^\varepsilon, u_s)\|v_0^\varepsilon\|_{H^1} \cdot t, \quad t \in \mathbb{R},$$

where

$$K(u_0^\varepsilon, u_s) = \left(\log A \left[\|\omega_0^\varepsilon\|_{L^\infty} + \|\omega_s\|_{L^\infty}\right]\right)^{1/2} + \left(\log \frac{1}{\|v_0^\varepsilon\|_{H^1}}\right)^{1/2}. $$

Remark. Of course, for large $|t|$ one has the bound $\|\Omega^\varepsilon(t)\|_{L^\infty} \leq \|\omega^\varepsilon(t)\|_{L^\infty} + \|\omega_s\|_{L^\infty} = \|\omega_0^\varepsilon\|_{L^\infty} + \|\omega_s\|_{L^\infty}$. The content of (2.12) is that for given (small) $\delta > 0$, if $\|\omega_0^\varepsilon - \omega_s\|_{L^\infty} \leq \delta$, then $\|\Omega^\varepsilon(t)\|_{L^\infty} \leq 2\delta$ for a time interval of length

$$\approx C \delta \rho, \quad \rho = \|u_0^\varepsilon - u_s\|_{H^1} \left(\log \frac{1}{\|u_0^\varepsilon - u_s\|_{H^1}}\right)^{1/2}. $$
To proceed with further estimates on $v^\varepsilon(t) = u^\varepsilon(t) - u_s$, we use the fact that since $v^\varepsilon(t) \in V^1(\Omega)$ and $\mathbf{rot} v^\varepsilon(t) = \Omega^\varepsilon(t)$, we have

\[v^\varepsilon(t) = J \nabla \Delta^{-1} \Omega^\varepsilon(t) + P v^\varepsilon(t), \tag{2.14} \]

where Δ^{-1} solves the Dirichlet problem and P is the orthogonal projection of $L^2(\Omega, \mathbb{R}^2)$ onto a finite dimensional space of harmonic vector fields in $C^\infty(\overline{\Omega}, \mathbb{R}^2)$. Cf. [T], Chapter 17, Lemma 3.5. ($P = 0$ if Ω is simply connected.) Given the estimate (1.2) on $\|v^\varepsilon\|_{H^1}$, we have global control on $P v^\varepsilon(t)$ in quite strong norms. To estimate $J \nabla \Delta^{-1} \Omega^\varepsilon(t)$ via (2.12), we note the following mapping property of Δ^{-1}:

\[\Delta^{-1} : L^\infty(\Omega) \longrightarrow C^2_*(\overline{\Omega}), \tag{2.15} \]

where $C^2_*(\overline{\Omega})$ is a Zygmund space; cf. [T], Chapter 13, §9. Combining (2.12)–(2.15), we have:

Proposition 2.2. In the setting of Proposition 2.1,

\[\|v^\varepsilon(t)\|_{C^1_*(\overline{\Omega})} \leq C \|\omega^\varepsilon_0 - \omega_s\|_{L^\infty} + C \|v^\varepsilon_0\|_{H^1} + C K(\omega^\varepsilon_0, u_s) \|v^\varepsilon_0\|_{H^1} \cdot |t|. \tag{2.16} \]

One significant aspect of such an estimate as (2.16) is the log-Lipschitz modulus of continuity possessed by elements of $C^1_*(\overline{\Omega})$:

\[|v(x) - v(y)| \leq C \log \frac{1}{|x - y|} |x - y| \cdot \|v\|_{C^1_*} , \quad |x - y| \leq \frac{1}{2}. \tag{2.17} \]

Because of this modulus of continuity, Osgood’s theorem applies to show that the t-dependent vector field $u^\varepsilon(t)$ generates a uniquely defined flow, though estimates on such a flow are not as good as they would be if the $C^1_*(\overline{\Omega})$ estimate could be replaced by an equally strong $C^1(\overline{\Omega})$ estimate. In §3 we will obtain $C^1(\overline{\Omega})$ estimates, but the upper bounds will be larger than they are in (2.16).

Work of [CDS] produces a result a bit sharper than (2.16). By Theorem 5.8 of that paper,

\[|\alpha| \leq 2 \implies ED^\alpha \Delta^{-1} : L^\infty(\Omega) \rightarrow \text{bmo}(\mathbb{R}^2), \tag{2.18} \]

where for a function f on Ω, one sets $Ef(x) = f(x)$ for $x \in \Omega$, 0 for $x \in \mathbb{R}^2 \setminus \Omega$. Consequently, (2.16) is sharpened to

\[\|E \nabla v^\varepsilon(t)\|_{\text{bmo}(\mathbb{R}^2)} \leq C \|\omega^\varepsilon_0 - \omega_s\|_{L^\infty} + C \|v^\varepsilon_0\|_{H^1} + C K(\omega^\varepsilon_0, u_s) \|v^\varepsilon_0\|_{H^1} \cdot |t|. \tag{2.19} \]

While (2.19) is stronger than (2.16), it does not yield a modulus of continuity estimate stronger than (2.17).

Remark. In addition to applicability to results on flows generated by the velocity field u^ε,
another advantage of the estimates in Proposition 2.1 over the H^1-estimate (1.2) arises from the following consideration (pointed out by the referee). One does not have a uniqueness result for weak solutions to the Euler equation (1.1) with initial data u_0^ε in $V^1(\Omega)$, defined by (1.9). However, under the additional condition that $\text{rot } u_0^\varepsilon$ belong to $L^\infty(\Omega)$, one does have global existence and uniqueness; cf. [K], [Y].

3. C^1 and H^k estimates

We desire to complement the estimates in §2 on $v^\varepsilon(t) = u^\varepsilon(t) - u_s$ with estimates in the C^1 norm and in H^k norm. A major ingredient will be estimates in these norms of $u^\varepsilon(t)$, given as in (1.1). A crucial connection between these estimates is given by the estimate of [BKM] type:

$$\|\nabla u^\varepsilon\|_{L^\infty} \leq C \left(1 + \log \frac{A\|u^\varepsilon\|_{H^3}}{\|\omega^\varepsilon\|_{L^\infty}}\right) \|\omega^\varepsilon\|_{L^\infty} + C\|\nabla u^\varepsilon\|_{L^2}, \tag{3.1}$$

established in the context of bounded regions in §3, Chapter 17, of [T]. As we have seen, conservation of vorticity gives

$$\|\omega^\varepsilon(t)\|_{L^\infty} \leq C. \tag{3.2}$$

A standard attack on estimating $\|u^\varepsilon(t)\|_{H^k}$ starts with

$$\frac{d}{dt}\|u^\varepsilon\|_{H^k}^2 = -2\langle P\nabla u^\varepsilon u^\varepsilon, u^\varepsilon \rangle_{H^k}, \tag{3.3}$$

where P is the Helmholtz projection. Then an integration by parts and use of Gagliardo-Nirenberg-Moser estimates gives

$$\|(P\nabla u^\varepsilon u^\varepsilon, u^\varepsilon)_{H^k}\| \leq C\|u^\varepsilon\|_{C^1}\|u^\varepsilon\|_{H^k}^2; \tag{3.4}$$

cf. (3.24) in [T], Chapter 17. It follows that

$$\frac{d}{dt}\|u^\varepsilon\|_{H^k}^2 \leq C\|u^\varepsilon\|_{C^1}\|u^\varepsilon\|_{H^k}^2. \tag{3.5}$$

Let us set $G^\varepsilon_k(t) = \|u^\varepsilon(t)\|_{H^k}^2$. Using (3.1)–(3.2) we see that, if $k \geq 3$,

$$\frac{d}{dt}G^\varepsilon_k(t) \leq C(1 + \log^+ G^\varepsilon_k(t))G^\varepsilon_k(t). \tag{3.6}$$

Gronwall’s inequality then yields an estimate

$$\|u^\varepsilon(t)\|_{H^k} \leq e^{Ce^{Ct}}, \quad 0 \leq t. \tag{3.7}$$
Taking $k = 3$ and using (3.1)–(3.2) again, we have

\begin{equation}
\| \nabla u^\varepsilon(t) \|_{L^\infty} \leq C e^{C t}, \quad 0 \leq t.
\end{equation}

Remark. The estimates (3.1)–(3.8) are valid for any smooth initial data $u^\varepsilon(0, x) = u_0(x)$, not necessarily producing a stationary solution at $\varepsilon = 0$.

Now assume $u^0(t, x) \equiv u_s(x)$ is a stationary solution satisfying either the hypotheses (1.10) or (1.11)–(1.12), so we have estimates on $v^\varepsilon = u^\varepsilon - u_s$ and on $\Omega^\varepsilon = \text{rot } v^\varepsilon$ given in (1.2), (2.9), and (2.12). Parallel to (3.1), we have

\begin{equation}
\| \nabla v^\varepsilon \|_{L^\infty} \leq C \left(1 + \log \frac{A \| v^\varepsilon \|_{H^3}}{\| \Omega^\varepsilon \|_{L^\infty}} \right) \| \Omega^\varepsilon \|_{L^\infty} + C \| \nabla v^\varepsilon \|_{L^2}.
\end{equation}

Since $\| v^\varepsilon \|_{H^k} \leq \| u^\varepsilon \|_{H^k} + \| u_s \|_{H^k}$ we can use (3.7) to deduce that

\begin{equation}
\| \nabla v^\varepsilon(t) \|_{L^\infty} \leq C \left(C e^{C|t|} + \log \frac{1}{\| \Omega^\varepsilon(t) \|_{L^\infty}} \right) \| \Omega^\varepsilon(t) \|_{L^\infty} + C \| \nabla v^\varepsilon(t) \|_{L^2}.
\end{equation}

We can insert (2.12) and (1.2) into this estimate, to obtain

\begin{equation}
\| \nabla v^\varepsilon(t) \|_{L^\infty} \leq C e^{C|t|} \left(\| \omega^\varepsilon_0 - \omega_s \|_{L^\infty} + C K(u^\varepsilon_0, u_s) \| v^\varepsilon_0 \|_{H^1} \cdot |t| \right).
\end{equation}

It would be interesting to know whether one could replace the exponential factor $e^{C|t|}$ by something smaller. Such estimates are obtained in [GJRS], in a related setting, but with dissipation (and small forcing) added to (1.1) (and with Ω replaced by a torus). For estimates there, dissipation plays a crucial role.

A. Discussion of the BGW-type estimate (2.3)

We discuss the estimate (2.3), i.e.,

\begin{equation}
\| u \|_{L^\infty} \leq C \left(1 + \log \frac{A \| \omega \|_{L^\infty}}{\| \omega \|_{L^2}} \right)^{1/2} \| \omega \|_{L^2} + C \| u \|_{L^2},
\end{equation}

and variants, which are similar to estimates arising in [BG] and [BW]. (The slight difference in appearance between (2.3) and (A.1) can be accounted for by adjusting A.) Here $\omega \in L^\infty(\Omega)$, where Ω is a smoothly bounded planar domain, and $\omega = \text{rot } u$, with $u \in V^1(\Omega)$, defined by (1.9). One has, as in (2.14),

\begin{equation}
u = J \nabla \Delta^{-1} \omega + Pu,
\end{equation}
where Δ^{-1} solves the Dirichlet problem and P is an orthogonal projection of $L^2(\Omega, \mathbb{R}^2)$ onto a finite dimensional space of harmonic vector fields, in $C^\infty(\overline{\Omega}, \mathbb{R}^2)$. In particular, $\|u\|_{H^1} \approx \|\omega\|_{L^2} + \|u\|_{L^2}$, and for any given $r \in (0, 1)$, $\|u\|_{C^r} \leq C\|\omega\|_{L^\infty} + C\|u\|_{L^2}$. Hence (A.1) follows from

(A.3) $\|u\|_{L^\infty} \leq C\left(1 + \log \frac{A\|u\|_{C^r}}{\|u\|_{H^1}}\right)^{1/2} \|u\|_{H^1}$,

given $u \in H^1(\Omega) \cap C^r(\overline{\Omega})$, Ω a smoothly bounded planar domain. Standard extension maps allow us to work instead on \mathbb{T}^2.

More generally, working on \mathbb{T}^n, we claim that

(A.4) $\|u\|_{L^\infty} \leq C\left(1 + \log \frac{A\|u\|_{C^r}}{\|u\|_{H^{n/p, p}}}\right)^{1-1/p} \|u\|_{H^{n/p, p}}$,

given $1 < p < \infty$.

To get this, take $\Psi \in C^\infty_0(\mathbb{R})$, with $\Psi(s) = 1$ for $|s| \leq 1$, 0 for $|s| \geq 2$, and write

(A.5) $u = \Psi(\varepsilon D)u + (I - \Psi(\varepsilon D))u$.

There is the elementary estimate

(A.6) $\|(I - \Psi(\varepsilon D))u\|_{L^\infty} \leq C\varepsilon^r \|u\|_{C^r}$.

We claim that

(A.7) $\|\Psi(\varepsilon D)u\|_{L^\infty} \leq C\left(\log \frac{1}{\varepsilon}\right)^{1-1/p} \|u\|_{H^{n/p, p}}$.

Given this, picking ε such that

(A.8) $\varepsilon^r = \frac{\|u\|_{H^{n/p, p}}}{\|u\|_{C^r}}$

then gives (A.4).

The estimate (A.7) is equivalent to

(A.9) $\|\Psi(\varepsilon D)\Lambda^{-n/p}v\|_{L^\infty} \leq C\left(\log \frac{1}{\varepsilon}\right)^{1-1/p} \|v\|_{L^p}$,

where $\Lambda = (1 - \Delta)^{1/2}$. We have $\Lambda^{-s}v = J_s \ast v$ where, for $0 < s < n$, $J_s \in C^\infty(\mathbb{T}^n \setminus 0)$ and

(A.10) $J_s(x) \sim C|x|^{s-n}, \quad |x| \leq 1$.

It follows that

(A.11) $\Psi(\varepsilon D)\Lambda^{-s}v = K_{s, \varepsilon}v$,
where

\[|K_{s,\varepsilon}(x)| \leq C\varepsilon^{s-n}, \quad |x| \leq \varepsilon, \]
\[C|x|^{s-n}, \quad |x| \geq \varepsilon. \]

It then follows that

\[\|K_{s,\varepsilon}\|_{L^q}^q \leq C\varepsilon^{q(s-n)} \varepsilon^n + \int_{\varepsilon}^1 r^{q(s-n)} r^{n-1} dr \]
\[= C + C \log \frac{1}{\varepsilon}, \quad \text{if} \quad qs - qn + n = 0. \]

Note that

\[s = \frac{n}{p}, \quad \frac{1}{p} + \frac{1}{q} = 1 \implies qs - qn + n = nq \left(\frac{1}{p} - 1 + \frac{1}{q} \right) = 0. \]

Thus, with \(q = p' \),

\[\|\Psi(\varepsilon D)A^{-n/p}v\|_{L^\infty} \leq \|K_{n/p,\varepsilon}\|_{L^v} \|v\|_{L^p} \leq C \left(\log \frac{1}{\varepsilon} \right)^{1/q} \|v\|_{L^p}, \]

which yields the asserted estimate (A.9). The proof of (A.4) is complete.

References

Michael E. Taylor
Mathematics Department
University of North Carolina
Chapel Hill NC 27599, USA