Equivariant Isometric Embeddings of Homogeneous Spaces
Into Hilbert Space

Michael Taylor

Let G be a Lie group, $K \subset G$ a compact subgroup. Denote the associated Lie algebras by \mathfrak{g} and \mathfrak{k}. Let π be a unitary representation of G on a Hilbert space H, and let $u \in H$ be a smooth vector. We denote the associated Lie algebra representation of \mathfrak{g} by $d\pi$. Let us assume that, given $X \in \mathfrak{g}$,

$$d\pi(X)u = 0 \iff X \in \mathfrak{k},$$

that

$$g \in K \implies \pi(g)u = u,$$

and that, given $g \in G$,

$$\pi(g)u = u \implies g \in K.$$

Under these hypotheses, define

$$\varphi : G \to H, \quad \varphi(g) = \pi(g)u.$$ By (2), this gives rise to a map

$$\psi : G/K \to H, \quad \psi([g]) = \varphi(g),$$

and by (3) this map is one-to-one. Note that, given $X \in \mathfrak{g} = T_eG$,

$$D\varphi(e)X = d\pi(X)u,$$

so the hypotheses above imply ψ is an embedding. Let \tilde{X} denote the left invariant vector field on G associated to X:

$$\tilde{X}(g) = \frac{d}{dt}g\text{Exp}(tX)\bigg|_{t=0} \in T_gG.$$ Note that

$$D\varphi(g)\tilde{X}(g) = \frac{d}{dt}\varphi(g\text{Exp}(tX))\bigg|_{t=0}$$

$$= \frac{d}{dt}\pi(g\text{Exp}(tX))u\bigg|_{t=0}$$

$$= \pi(g)d\pi(X)u.$$
Hence, if also \(Y \in \mathfrak{g} \), we have a (degenerate) inner product on \(T_g G \) given by
\[
\langle \tilde{X}(g), \tilde{Y}(g) \rangle = \text{Re}(D\varphi(g)\tilde{X}(g), D\varphi(g)\tilde{Y}(g))_H
\]
\[
= \text{Re}(\pi(g)d\pi(X)u, \pi(g)d\pi(Y)u)_H,
\]
which by unitarity of \(\pi \) is equal to
\[
\langle X, Y \rangle = \text{Re}(d\pi(X)u, d\pi(Y)u)_H.
\]
Consequently, the embedding (5) induces a Riemannian metric on \(M = G/K \) that is \(G \)-invariant, and with respect to which (5) is an isometric embedding, onto a manifold in \(H \) that is a \(G \)-orbit.

Now \(M = G/K \) might come with a \(G \)-invariant metric tensor, and the question arises whether it must coincide (up to a constant factor) with the metric produced by (5). Indeed, sometimes the following holds:
\[
M = G/K \text{ has a unique } G\text{-invariant Riemannian metric, up to a constant factor.}
\]
To restate this condition, take \(p = [e] \in M \) and note the natural action of \(K \) on \(T_p M \). The condition (9) is equivalent to
\[
T_p M \text{ has a unique } K\text{-invariant inner product, up to a constant factor.}
\]
This is equivalent to saying that \(\mathfrak{g}/\mathfrak{k} \) has no proper \(\text{ad(}K)\)-invariant linear subspace. Such a condition holds, for example, if \(M \) is a rank-1 symmetric space. See [CR] for the special case of balls with the hyperbolic metric.

On the other hand, (11)–(12) can fail, for example when \(K = \{e\} \) and \(G > 1 \). The set of \(K \)-invariant inner products on \(T_p M \) is a nonempty, open, convex cone \(\Gamma \) in \(S^2_K T_p^* \), the linear space of \(K \)-invariant symmetric bilinear forms on \(T_p \). Even when \(\dim S^2_K T_p^* > 1 \), the following is true.

Proposition 1. If \((M, h)\) is a Riemannian manifold on which \(G \) acts transitively, as a group of isometries, with \(K \subset G \) the compact subgroup fixing \(p \in M \), then \(M \) has an equivariant isometric embedding into a Hilbert space.

To begin the proof, we bring in the regular representation of \(G \) on \(L^2(M, h) \):
\[
L(g)u(x) = u(g^{-1}x), \quad u \in L^2(M, h).
\]
Pick \(u \in C_0^\infty(M) \) to be a positive, monotonically decreasing function of \(d(x, p) \). Then (1)–(3) hold, for \(\pi = L \). Thus we have an embedding
\[
\psi : M \rightarrow L^2(M, h), \quad \psi(g \cdot p) = L(g)u,
\]
giving as in (8)–(10) a \(G \)-invariant metric tensor \(\tilde{g} \).

Let us denote by \(Q \) the inner product on \(T_p M \) given by \(h \) at \(p \), and also the associated degenerate inner product on \(\mathfrak{g} \). With \(u \) as above, set
\[
u_\delta(x) = \delta^{1-n/2}u(\delta^{-1}x),
\]
in exponential coordinates centered at \(p \), and set
\[
Q_\delta(X, Y) = (dL(X)u_\delta, dL(Y)u_\delta)_{L^2}.
\]
The following is readily established.
Lemma 2. There exists \(A \in (0, \infty) \) such that, for all \(X, Y \in \mathfrak{g} \),

\[
\lim_{\delta \to 0} Q_\delta(X, Y) = AQ(X, Y).
\]

Replacing \(u \) by \(A^{-1/2}u \), we have

\[
\lim_{\delta \to 0} Q_\delta(X, Y) = Q(X, Y).
\]

If \(\dim S^2_K T^*_p = \ell = 1 \), we are of course done. If \(\ell > 1 \), we proceed as follows. Let \(A_j, 1 \leq j \leq \ell \) be a basis of \(S^2_K T^*_p \), and pick \(\eta > 0 \) so small that

\[
Q_{\pm j} = Q \pm \eta A_j \quad \text{all belong to} \quad \Gamma.
\]

Then, by arguments as above, pick \(u_{\pm j} \) such that if \(u_{\pm j, \delta}(x) = \delta^{1-n/2} u_{\pm j}(\delta^{-1} x) \),

\[
Q_{\delta,\pm j}(X, Y) = (dL(X)u_{\pm j, \delta}, dL(Y)u_{\pm j, \delta})_{L^2},
\]

then

\[
\lim_{\delta \to 0} Q_{\delta,\pm j}(X, Y) = Q_{\pm j}(X, Y).
\]

Picking \(\delta \) sufficiently small, we have

\[
Q \in \text{convex hull of} \quad \{Q_{\delta,\pm j}\}.
\]

Then we can achieve the metric tensor \(h \) by embedding \(M \) into a finite sum of copies of \(L^2(M, h) \), via (13) with \(u \) replaced by \(u_{\pm j, \delta} \).

Remark. Sometimes the procedure described above yields finite dimensional equivariant isometric embeddings. For example, take \(M = \mathbb{R}P^2 \), covered by \(S^2 \). If we let \(\pi \) denote the natural representation of \(SO(3) \) on the space of spherical harmonics on \(S^2 \) corresponding to harmonic polynomials on \(\mathbb{R}^3 \) that are homogeneous of degree 2 (a 5-dimensional space), we get an equivariant isometric embedding of \(\mathbb{R}P^2 \) into \(\mathbb{R}^5 \).

Reference