The two variable Newton method for solving equations

Let \(a(x,y) \) and \(b(x,y) \) be two differentiable functions of \(x \) and \(y \). In calculus we sometimes need to solve the equations

\[
(*) \quad a(x,y) = 0 \quad \text{and} \quad b(x,y) = 0
\]
simultaneously. Here are two examples.

Example 1 Find the critical points of a function \(f(x,y) \).

We need to find simultaneous solutions to the equations

\[
\frac{\partial f}{\partial x}(x,y) = 0 \quad \text{and} \quad \frac{\partial f}{\partial y}(x,y) = 0.
\]
This is (*), where \(a(x,y) = \frac{\partial f}{\partial x}(x,y) \) and \(b(x,y) = \frac{\partial f}{\partial y}(x,y) \).

Example 2 Find the maximum and minimum values of a function \(f(x,y) \) on a curve of the form \(g(x,y) = c \). The method of Lagrange multipliers says that we must solve the equation

\[
\nabla f(x,y) = \lambda \nabla g(x,y),
\]
which becomes the two equations

\[
(1) \quad \frac{\partial f}{\partial x} = \lambda \frac{\partial g}{\partial x} \quad \text{and} \quad (2) \quad \frac{\partial f}{\partial y} = \lambda \frac{\partial g}{\partial y}.
\]
Multiplying (1) by \(\frac{\partial g}{\partial y} \) and multiplying (2) by \(\frac{\partial g}{\partial x} \) we obtain

\[
\frac{\partial f}{\partial x} \frac{\partial g}{\partial y} = \frac{\partial f}{\partial y} \frac{\partial g}{\partial x}.
\]
Hence we must solve the equations (*), where \(a(x,y) = g(x,y) - c \) and \(b(x,y) = \frac{\partial f}{\partial x} \frac{\partial g}{\partial y} - \frac{\partial f}{\partial y} \frac{\partial g}{\partial x} \).

Newton's method of solution

In general there is no method for getting solutions to (*) that you can write down. However the Newton method gives a numerical procedure that solves the equation (*) to any desired degree of accuracy. The idea behind the Newton method is very simple. We describe it first and then illustrate the method with two examples.

Step 1 By some method we find an approximate solution \((x_o, y_o) \) to (*).

One way to find an approximate solution to (*) would be to graph the curves \(a(x,y) = 0 \) and \(b(x,y) = 0 \), and then look to see where these two curves intersect. A computer program with a zoom finder can be useful here.

Step 2 We replace the linear equations (*) by the approximate equations

\[
(*)_o \quad a_o(x,y) = 0 \quad \text{and} \quad b_o(x,y) = 0
\]
where \(a_o(x,y) \) and \(b_o(x,y) \) are the linear approximations of \(a(x,y) \) and \(b(x,y) \) at \((x_o, y_o) \). The equation \((*)_o \) is a linear equation in two unknowns \(x \) and \(y \), and it can be easily solved by
hand. The solution \((x_1,y_1)\) to \((*)_o\) is not the true solution to the original equation \((*)\), but in general it is a better approximation than \((x_o,y_o)\).

Recall that the linear approximation of a function \(f(x,y)\) at a point \((x_o,y_o)\) is given by
\[
f_o(x,y) = A + B(x - x_o) + C(y - y_o)
\]
where \(A = f(x_o,y_o)\), \(B = \frac{\partial f}{\partial x}(x_o,y_o)\) and \(C = \frac{\partial f}{\partial y}(x_o,y_o)\), all real numbers.

Step 3 We replace the linear equations \((*)\) by the approximate equations
\[
(*)_1 \quad a_1(x,y) = 0 \text{ and } b_1(x,y) = 0
\]
where \(a_1(x,y)\) and \(b_1(x,y)\) are the linear approximations of \(a(x,y)\) and \(b(x,y)\) at \((x_1,y_1)\). Let \((x_2,y_2)\) be the solution to \((*)_1\).

Step 4 Continue as described above. In general we get a sequence of approximate solutions \((x_1,y_1), (x_2,y_2), ..., (x_k,y_k)\) that converge rapidly to the true solution if the beginning approximate solution \((x_o,y_o)\) is reasonably accurate. To obtain the next approximate solution \((x_{k+1},y_{k+1})\) we solve the equations
\[
(*)_k \quad a_k(x,y) = 0 \text{ and } b_k(x,y) = 0
\]
where \(a_k(x,y)\) and \(b_k(x,y)\) are the linear approximations of \(a(x,y)\) and \(b(x,y)\) at \((x_k,y_k)\).

A matrix formula for the approximate solutions \((x_k,y_k)\)

In order to solve the approximate equations \((*)_k\) above rapidly with a computer it is useful to have a formula that one can program into the computer. First we define the

Jacobian matrix \(J(x,y) = \begin{bmatrix} \frac{\partial a}{\partial x} & \frac{\partial a}{\partial y} \\ \frac{\partial b}{\partial x} & \frac{\partial b}{\partial y} \end{bmatrix}\). If we write \((x_k,y_k)\) and \((x_{k+1},y_{k+1})\) as column vectors

\[
\begin{bmatrix} x_k \\ y_k \end{bmatrix} \text{ and } \begin{bmatrix} x_{k+1} \\ y_{k+1} \end{bmatrix}
\]

then the equation \((*)_k\) can be written in matrix form as

\[
\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} a(x_k) \\ b(y_k) \end{bmatrix} + J(x_k,y_k) \begin{bmatrix} x-x_k \\ y-y_k \end{bmatrix} + J(x_k,y_k) \begin{bmatrix} x_k \\ y_k \end{bmatrix} - J(x_k,y_k)^{-1} \begin{bmatrix} a(x_k) \\ b(y_k) \end{bmatrix}
\]

The solution \(\begin{bmatrix} x_{k+1} \\ y_{k+1} \end{bmatrix}\) to \((*)_k\) in matrix form now becomes

\[
(*)_k \quad \begin{bmatrix} x_{k+1} \\ y_{k+1} \end{bmatrix} = \begin{bmatrix} x_k \\ y_k \end{bmatrix} - J(x_k,y_k)^{-1} \begin{bmatrix} a(x_k) \\ b(y_k) \end{bmatrix}
\]

where \(J(x_k,y_k)^{-1}\) denotes the inverse of the matrix \(J(x_k,y_k)\).
Example 1 Find an intersection point of the circle \(x^2 + y^2 = 1 \) and the parabola \(y = x^2 \).

We need to solve the equations

\[
(*) \quad \begin{align*}
 a(x, y) &= 0 \quad \text{where } a(x, y) = y - x^2 \\
 b(x, y) &= 0 \quad \text{where } b(x, y) = x^2 + y^2 - 1
\end{align*}
\]

We pick \((x_0, y_0) = (1, 1)\) as an approximate solution. If \(a_o(x, y)\) and \(b_o(x, y)\) denote the linear approximations at \((x_0, y_0)\), then we obtain \(a_o(x, y) = -2x + y + 1\) and \(b_o(x, y) = 2x + 2y - 3\). Hence the equations \(a_o(x, y) = 0\) and \(b_o(x, y) = 0\) have the solution \((x_1, y_1) = (5/6, 2/3)\).

If \(a_1(x, y)\) and \(b_1(x, y)\) denote the linear approximations at \((x_1, y_1)\), then we obtain \(a_1(x, y) = -(5/3)x + y + (25/36)\) and \(b_1(x, y) = (5/3)x + (4/3)y - (77/36)\). Hence the equations \(a_1(x, y) = 0\) and \(b_1(x, y) = 0\) have the solution \((x_2, y_2) = (331/420, 13/21)\).

If we continue this process we obtain the following approximate solutions

\[
\begin{align*}
 (x_1, y_1) &= (5/6, 2/3) \approx (0.8333, 0.6667) \\
 (x_2, y_2) &= (331/420, 13/21) \approx (0.7881, 0.6190) \\
 (x_3, y_3) &\approx (0.7861, 0.6180). \quad \text{In two more steps we obtain 15 digit accuracy} \\
 (x_5, y_5) &\approx (0.78615137757423, 0.618033988749894)
\end{align*}
\]

Example 2 Find a critical point of the function \(f(x, y) = 2x^2y^2 + x^2y - 2x - y^2\)

We calculate

\[
\begin{align*}
 a(x, y) &= \frac{\partial f}{\partial x}(x, y) = 4xy^2 + 2xy - 2 \\
 b(x, y) &= \frac{\partial f}{\partial y}(x, y) = 4x^2y + x^2 - 2y
\end{align*}
\]

The critical points of \(f(x, y)\) are the solutions to the equations \(a(x, y) = 0\) and \(b(x, y) = 0\).

We start with the approximate solution \((x_o, y_o) = (1, -1)\) and we obtain the equations

\[
\begin{align*}
 0 &= a_o(x, y) = 0 + 2(x-1) - 6(y+1) = 2x - 6y - 8 \\
 0 &= b_o(x, y) = -1 - 6(x-1) + 2(y+1) = -6x + 2y + 7
\end{align*}
\]

The solution to these equations is the next approximate solution

\[
(x_1, y_1) = (13/16, -17/16) = (0.8125, -1.0625) \quad \text{Continuing we obtain}
\]

\[
(x_2, y_2) \approx (.8069, -1.0759) \quad \text{In two more steps we obtain 15 digit accuracy}
\]

\[
(x_4, y_4) \approx (0.807068419897086, -1.075848752008690)
\]