Some results and systems related to the super-K property

Karl Petersen

Department of Mathematics
University of North Carolina at Chapel Hill

2012 Workshop in Dynamical Systems and Related Topics
Pennsylvania State University
Outline

Introduction

Ordinary tail fields

Fine tail fields

Super-K

Super-K plus generators

Systems that present tail fields

Some questions about the systems
Introduction

Dresden
A Little Earlier
Help
Thouvenot, Schmidt, Weiss
Stationary processes

\((X, \mathcal{B}, \mu, T)\) ergodic measure-preserving system (usually invertible)
Stationary processes

\((X, \mathcal{B}, \mu, T)\) ergodic measure-preserving system (usually invertible)

\(\alpha = \{a_1, \ldots, a_r\}\) finite measurable partition
Stationary processes

\((X, \mathcal{B}, \mu, T)\) ergodic measure-preserving system (usually invertible)

\[\alpha = \{a_1, \ldots, a_r\}\] finite measurable partition

The process \((X, \mathcal{B}, \mu, T, \alpha)\) corresponds to a shift-invariant measure (also call it \(\mu\)) on \(\Omega = \alpha^\mathbb{Z}\).
Stationary processes

\((X, \mathcal{B}, \mu, T)\) ergodic measure-preserving system (usually invertible)

\(\alpha = \{a_1, \ldots, a_r\}\) finite measurable partition

The process \((X, \mathcal{B}, \mu, T, \alpha)\) corresponds to a shift-invariant measure (also call it \(\mu\)) on \(\Omega = \alpha^\mathbb{Z}\).

The time-0 partition of \(\Omega\) is a generator for the m.p. system \((\Omega, \mu, \sigma)\).
Ordinary tail fields

Tail fields

The future tail field is $\mathcal{T}^+ = \bigcap_{n \geq 0} \mathcal{B}(\omega, \omega_{n+1}, \ldots)$.
Tail fields

The future tail field is \(\mathcal{T}^+ = \bigcap_{n \geq 0} \mathcal{B}(\omega_n, \omega_{n+1}, \ldots) \).

In \(X \), \(\mathcal{T}^+(\alpha) = \bigcap_{n \geq 0} \mathcal{B}(T^{-n}\alpha \vee T^{-n-1}\alpha \vee \ldots) \).
Ordinary tail fields

Tail fields

The future tail field is $\mathcal{T}^+ = \bigcap_{n \geq 0} \mathcal{B}(\omega_n, \omega_{n+1}, \ldots)$.

In X, $\mathcal{T}^+(\alpha) = \bigcap_{n \geq 0} \mathcal{B}(T^{-n}\alpha \lor T^{-n-1}\alpha \lor \ldots)$.

It is the intersection of the algebras generated by all the cylinder sets $\{ T^n x \in a_{i_n}, \ldots, T^{n+j} x \in a_{i_{n+j}} : n, j \geq 0 \}$.
Tail fields

The future tail field is $\mathcal{T}^+ = \bigcap_{n \geq 0} \mathcal{B}(\omega_n, \omega_{n+1}, \ldots)$.

In X, $\mathcal{T}^+(\alpha) = \bigcap_{n \geq 0} \mathcal{B}(T^{-n}\alpha \vee T^{-n-1}\alpha \vee \ldots)$.

It is the intersection of the algebras generated by all the cylinder sets $\{ T^n x \in a_{i_n}, \ldots, T^{n+j} x \in a_{i_{n+j}} : n, j \geq 0 \}$.

When α is a generator, $\mathcal{T}^+(\alpha)$ is the Pinsker algebra of (X, \mathcal{B}, μ, T).
The K property

A system (X, B, μ, T) is K (has the Kolmogorov property) if there is a generator α such that $T^+(\alpha)$ is trivial, i.e. consists only of sets of measure 0 or 1.
The K property

A system (X, \mathcal{B}, μ, T) is K (has the Kolmogorov property) if there is a generator α such that $T^+(\alpha)$ is trivial, i.e. consists only of sets of measure 0 or 1.

We also define $T^-(\alpha) = \bigcap_{n \geq 0} \mathcal{B}(T^n \alpha \vee T^{n+1} \alpha \vee \ldots)$, $T^{\pm}(\alpha) = \bigcap_{n \geq 0} \mathcal{B}\{x_i : |i| \geq n\}$.
The *K* property

A system \((X, \mathcal{B}, \mu, T)\) is *K* (has the *Kolmogorov property*) if there is a generator \(\alpha\) such that \(T^+(\alpha)\) is trivial, i.e. consists only of sets of measure 0 or 1.

We also define \(\mathcal{T}^- (\alpha) = \bigcap_{n \geq 0} \mathcal{B}(T^n \alpha \vee T^{n+1} \alpha \vee \ldots)\), \(\mathcal{T}^\pm (\alpha) = \bigcap_{n \geq 0} \mathcal{B}\{x_i : |i| \geq n\}\).

Rohlin-Sinai, 1961: \((X, \mathcal{B}, \mu, T)\) is *K* if and only if it has *completely positive entropy*, i.e. every nontrivial factor has positive entropy.
The K property

A system (X, B, μ, T) is K (has the Kolmogorov property) if there is a generator α such that $T^+(\alpha)$ is trivial, i.e. consists only of sets of measure 0 or 1.

We also define $T^-(\alpha) = \bigcap_{n \geq 0} B(T^n \alpha \vee T^{n+1} \alpha \vee \ldots)$, $T^\pm(\alpha) = \bigcap_{n \geq 0} B\{x_i : |i| \geq n\}$.

Rohlin-Sinai, 1961: (X, B, μ, T) is K if and only if it has completely positive entropy, i.e. every nontrivial factor has positive entropy.
The \(K \) property

A system \((X, \mathcal{B}, \mu, T)\) is \(K \) (has the \textit{Kolmogorov property}) if there is a generator \(\alpha \) such that \(\mathcal{T}^+ (\alpha) \) is trivial, i.e. consists only of sets of measure 0 or 1.

We also define

\[
\mathcal{T}^- (\alpha) = \bigcap_{n \geq 0} \mathcal{B} (T^n \alpha \lor T^{n+1} \alpha \lor \ldots),
\]

\[
\mathcal{T}^\pm (\alpha) = \bigcap_{n \geq 0} \mathcal{B} \{x_i : |i| \geq n\}.
\]

\textbf{Rohlin-Sinai, 1961:} \((X, \mathcal{B}, \mu, T)\) is \(K \) if and only if it has \textit{completely positive entropy}, i.e. every nontrivial factor has positive entropy.

Therefore, for any partition \(\alpha \), \(\mathcal{T}^- (\alpha) \) is trivial if and only if \(\mathcal{T}^+ (\alpha) \) is trivial (because for any \(\beta \leq \alpha \), \(h_\mu (T, \beta) = h_\mu (T^{-1}, \beta) \)).
Changing generators

Ornstein-Weiss, 1975: Given a partition \(\alpha \), there is a refinement \(\beta \geq \alpha \) such that \(\mathcal{T}^\pm(\beta) = \mathcal{B} \).
Changing generators

Ornstein-Weiss, 1975: Given a partition \(\alpha \), there is a refinement \(\beta \geq \alpha \) such that \(T^\pm(\beta) = B \).

Thus even if the process \((\alpha, T)\) is \(K \), so that no information about the present remains in either the remote future or in the remote past,
Changing generators

Ornstein-Weiss, 1975: Given a partition \(\alpha \), there is a refinement \(\beta \geq \alpha \) such that \(\mathcal{T}^{\pm}(\beta) = \mathcal{B} \).

Thus even if the process \((\alpha, T)\) is \(K\), so that no information about the present remains in either the remote future or in the remote past,

it can be recoded to an isomorphic process that is **2-sided deterministic**: if the remote past and remote future can communicate and cooperate, they can determine what is going on near the present.
Changing generators

Ornstein-Weiss, 1975: Given a partition α, there is a refinement $\beta \geq \alpha$ such that $\mathcal{T}^\pm(\beta) = \mathcal{B}$.

Thus even if the process (α, T) is K, so that no information about the present remains in either the remote future or in the remote past,

it can be recoded to an isomorphic process that is 2-sided deterministic: if the remote past and remote future can communicate and cooperate, they can determine what is going on near the present.
Fine tail fields

The ordinary tail fields are the fields of saturated sets for the Borel equivalence relation under *finite coordinate changes*.
Fine tail fields

The ordinary tail fields are the fields of saturated sets for the Borel equivalence relation under *finite coordinate changes*. Now consider some finer tail fields that allow for saving a limited amount of information as the present recedes into the distance.
Fine tail fields

The ordinary tail fields are the fields of saturated sets for the Borel equivalence relation under *finite coordinate changes*. Now consider some finer tail fields that allow for saving a limited amount of information as the present recedes into the distance.

\(G=\text{a group, probably } \mathbb{Z}.\) Assume discrete, countable, maybe abelian.
Fine tail fields

The ordinary tail fields are the fields of saturated sets for the Borel equivalence relation under *finite coordinate changes*. Now consider some finer tail fields that allow for saving a limited amount of information as the present recedes into the distance.

G = a group, probably \mathbb{Z}. Assume discrete, countable, maybe abelian.

$\psi : \Omega \rightarrow G$, a Borel map (or continuous, or even a one-block map), also considered as a map on X.
The ordinary tail fields are the fields of saturated sets for the Borel equivalence relation under \textit{finite coordinate changes}. Now consider some finer tail fields that allow for saving a limited amount of information as the present recedes into the distance.

$G=\text{a group, probably } \mathbb{Z}^r$. Assume discrete, countable, maybe abelian.

$\psi : \Omega \rightarrow G$, a Borel map (or continuous, or even a one-block map), also considered as a map on X

$$\psi^m_n(x) = \psi(T^m x) \cdots \psi(T^n x), \text{ in abelian case } \sum_{k=m}^{n} \psi(T^k x)$$
E.g., if $\psi : \Omega \to \mathbb{Z}^d$ is defined by $\psi(\omega) = e_i \in \mathbb{Z}^d$ if $\omega_0 = a_i$, then $\psi_{n-1}^0(\omega)$ gives in each entry i the number of times that a_i appears in the first n entries in ω.
Fine tail fields 2

E.g., if $\psi : \Omega \rightarrow \mathbb{Z}^d$ is defined by $\psi(\omega) = e_i \in \mathbb{Z}^d$ if $\omega_0 = a_i$, then $\psi_{0}^{n-1}(\omega)$ gives in each entry i the number of times that a_i appears in the first n entries in ω.

$\mathcal{F}_\psi^+(\alpha) = \bigcap_{n \geq 0} \mathcal{B}(\psi_0^n, \psi_0^{n+1}, \ldots)$
E.g., if $\psi : \Omega \rightarrow \mathbb{Z}^d$ is defined by $\psi(\omega) = e_i \in \mathbb{Z}^d$ if $\omega_0 = a_i$, then $\psi_{0}^{n-1}(\omega)$ gives in each entry i the number of times that a_i appears in the first n entries in ω.

\[\mathcal{F}_{\psi}^{+} (\alpha) = \bigcap_{n \geq 0} \mathcal{B}(\psi_{0}^{n}, \psi_{0}^{n+1}, \ldots) \]

\[\mathcal{F}_{\psi}^{-} (\alpha) = \bigcap_{n \geq 0} \mathcal{B}(\psi_{-n}^{0}, \psi_{-n-1}^{0}, \ldots) \]
E.g., if $\psi : \Omega \rightarrow \mathbb{Z}^d$ is defined by $\psi(\omega) = e_i \in \mathbb{Z}^d$ if $\omega_0 = a_i$, then $\psi_0^{n-1}(\omega)$ gives in each entry i the number of times that a_i appears in the first n entries in ω.

$$F^+_\psi(\alpha) = \bigcap_{n \geq 0} B(\psi_0^n, \psi_0^{n+1}, \ldots)$$

$$F^-\psi(\alpha) = \bigcap_{n \geq 0} B(\psi_0^0, \psi_0^0, \psi_0^0, \ldots)$$

$$F^\pm(\alpha) = \bigcap_{n \geq 0} B\{\psi_j^j : j \geq 0\}$$
Equivalence relations

These sigma-algebras are the saturated sets of corresponding Borel equivalence relations.
Equivalence relations

These sigma-algebras are the saturated sets of corresponding Borel equivalence relations

\[\omega \sim \omega' \text{ if and only if } \omega, \omega' \text{ differ in only finitely many coordinates and } \sum_{0 \text{ or } -\infty}^{\infty} [\psi(\sigma^k \omega) - \psi(\sigma^k \omega')] = 0. \]
Equivalence relations

These sigma-algebras are the saturated sets of corresponding Borel equivalence relations

\[\omega \sim \omega' \text{ if and only if } \omega, \omega' \text{ differ in only finitely many coordinates and } \sum_{0}^{\infty} \sum_{-\infty}^{\infty} [\psi(\sigma^{k}\omega) - \psi(\sigma^{k}\omega')] = 0. \]

When \(\psi \) is the symbol-counting cocycle, these equivalence relations are the orbit relation of the group of \textit{finite coordinate permutations}.
Relations among fields

Note that $\mathcal{F}_\psi^+(\alpha) \supset \mathcal{T}^+$ and $\mathcal{F}_\psi^-(\alpha) \supset \mathcal{T}^-$.
Fine tail fields

Relations among fields

Note that $\mathcal{F}_\psi^+(\alpha) \supset \mathcal{T}^+$ and $\mathcal{F}_\psi^-(\alpha) \supset \mathcal{T}^-$.

Also, $\mathcal{T}^\pm \supset \mathcal{T}^+, \mathcal{T}^-$
Relations among fields

Note that $F^+\psi(\alpha) \supset T^+$ and $F^-\psi(\alpha) \supset T^-$.

Also, $T^\pm \supset T^+, T^-$

but sometimes $T^\pm \neq T^+ \cap T^-$
Relations among fields

Note that $F_{\psi}^+(\alpha) \supset T^+$ and $F_{\psi}^-(\alpha) \supset T^-$.

Also, $T^\pm \supset T^+$, T^-

but sometimes $T^\pm \neq T^+ \cap T^-$

and sometimes $F_{\psi}^\pm(\alpha) \not\supset F_{\psi}^+(\alpha), F_{\psi}^-(\alpha)$.
We say that a process \((\alpha, T)\) is super-\(K^+\) if \(\mathcal{F}_\psi^+(\alpha)\) is trivial, with \(\psi\) the symbol-counting cocycle.

Super-\(K\)

For example, Bernoulli processes are super-\(K^+\), super-\(K^-\), and super-\(K^\pm\) (Hewitt-Savage, 1988). There are also such results for the 2-sided case by Blackwell-Freedman for Markov processes, Georgii for Gibbs states, Berbee-den Hollander for integer-valued processes, and others.
Super-K

We say that a process \((\alpha, T)\) is super-\(K^+\) if \(\mathcal{F}_\psi^+(\alpha)\) is trivial, with \(\psi\) the symbol-counting cocycle.

Super-\(K^-\) and super-\(K^\pm\) are defined similarly.
We say that a process \((\alpha, T)\) is super-\(K^+\) if \(\mathcal{F}_\psi^+(\alpha)\) is trivial, with \(\psi\) the symbol-counting cocycle.

Super-\(K^-\) and super-\(K^\pm\) are defined similarly.

For example, Bernoulli processes are super-\(K^+\), super-\(K^-\), and super-\(K^\pm\) (Hewitt-Savage, 1988).
We say that a process \((\alpha, T)\) is super-\(K^+\) if \(\mathcal{F}^+\psi(\alpha)\) is trivial, with \(\psi\) the symbol-counting cocycle.

Super-\(K^-\) and super-\(K^\pm\) are defined similarly.

For example, Bernoulli processes are super-\(K^+\), super-\(K^-\), and super-\(K^\pm\) (Hewitt-Savage, 1988).

There are also such results for the 2-sided case by Blackwell-Freedman for Markov processes, Georgii for Gibbs states, Berbee-den Hollander for integer-valued processes, and others.
But we don’t know, for example, whether $\mathcal{F}_\psi^+(\alpha)$ trivial implies $\mathcal{F}_\psi^-(\alpha)$ trivial.
Dependence on the partition

But we don’t know, for example, whether $\mathcal{F}_\psi^+(\alpha)$ trivial implies $\mathcal{F}_\psi^-(\alpha)$ trivial.

And unlike the K property, super-K depends on the choice of generating partition.
Dependence on the partition

But we don’t know, for example, whether $\mathcal{F}^+_{\psi}(\alpha)$ trivial implies $\mathcal{F}^-_{\psi}(\alpha)$ trivial.

And unlike the K property, super-K depends on the choice of generating partition.

We can have $\mathcal{F}^+_{\psi}(\alpha)$ trivial and find a refinement $\beta \geq \alpha$ with $\mathcal{F}^+_{\psi}(\beta)$ nontrivial (in fact equal to \mathcal{B}).
Triviality of two-sided fine tails

K. Schmidt-KP, 1997: Let μ be a shift-invariant Gibbs measure with summable-variation potential on a mixing SFT Σ_M;

K. Schmidt, 1999: If (X, B, μ, T) is ergodic and $\psi: X \to G$ (as above) is Borel, then $F^{\pm} = T^{\pm}$.

Interpretation: History is useless and science is impossible.

Corollary: Any process (could be countable-state) with 2-sided trivial tail field T^{\pm} is super-K^{\pm}: $F^{\pm} = T^{\pm}$.
Triviality of two-sided fine tails

K. Schmidt-KP, 1997: Let μ be a shift-invariant Gibbs measure with summable-variation potential on a mixing SFT Σ_M;

$\psi : \Sigma_M \rightarrow G$ a continuous function into a countable discrete group with finite conjugacy classes.
Triviality of two-sided fine tails

K. Schmidt-KP, 1997: Let \(\mu \) be a shift-invariant Gibbs measure with summable-variation potential on a mixing SFT \(\Sigma_M \);

\[\psi : \Sigma_M \rightarrow G \] a continuous function into a countable discrete group with finite conjugacy classes.

Then \(\mathcal{F}_\psi^\pm(\alpha) \) is trivial—i.e., \(\mu \) is ergodic with respect to the equivalence relation defined by \(\psi : (\Omega, \mu, \sigma) \) is super-\(K^\pm \).
Triviality of two-sided fine tails

K. Schmidt-KP, 1997: Let μ be a shift-invariant Gibbs measure with summable-variation potential on a mixing SFT Σ_M;

$\psi : \Sigma_M \to G$ a continuous function into a countable discrete group with finite conjugacy classes.

Then $\mathcal{F}_\psi^\pm (\alpha)$ is trivial—i.e., μ is ergodic with respect to the equivalence relation defined by $\psi : (\Omega, \mu, \sigma)$ is super-K^\pm.

K. Schmidt, 1999: If (X, \mathcal{B}, μ, T)is ergodic and $\psi : X \to G$ (as above) is Borel, then $\mathcal{F}_\psi^\pm (\alpha) = T^\pm$.

Interpretation: History is useless and science is impossible.
Corollary: Any process (could be countable-state) with 2-sided trivial tail field T^\pm is super-K^\pm: $\mathcal{F}_\psi^\pm (\alpha)$ is trivial.
Triviality of two-sided fine tails

K. Schmidt-KP, 1997: Let μ be a shift-invariant Gibbs measure with summable-variation potential on a mixing SFT Σ_M;

$\psi : \Sigma_M \rightarrow G$ a continuous function into a countable discrete group with finite conjugacy classes.

Then $\mathcal{F}_\psi^\pm(\alpha)$ is trivial—i.e., μ is ergodic with respect to the equivalence relation defined by ψ: (Ω, μ, σ) is super-K^\pm.

K. Schmidt, 1999: If (X, \mathcal{B}, μ, T)is ergodic and $\psi : X \rightarrow G$ (as above) is Borel, then $\mathcal{F}_\psi^\pm(\alpha)=T^\pm$. Interpretation: History is useless and science is impossible.
Triviality of two-sided fine tails

K. Schmidt-KP, 1997: Let μ be a shift-invariant Gibbs measure with summable-variation potential on a mixing SFT Σ_M;

$\psi : \Sigma_M \rightarrow G$ a continuous function into a countable discrete group with finite conjugacy classes.

Then $\mathcal{F}_\psi^\pm(\alpha)$ is trivial—i.e., μ is ergodic with respect to the equivalence relation defined by $\psi : (\Omega, \mu, \sigma)$ is super-K^\pm.

K. Schmidt, 1999: If (X, B, μ, T) is ergodic and $\psi : X \rightarrow G$ (as above) is Borel, then $\mathcal{F}_\psi^\pm(\alpha) = \mathcal{T}^\pm$. Interpretation: History is useless and science is impossible.

Corollary: Any process (could be countable-state) with 2-sided trivial tail field \mathcal{T}^\pm is super-K^\pm: $\mathcal{F}_\psi^\pm(\alpha)$ is trivial.
Super-K^+ generators

JPT-KP, 2004: If an ergodic system (X, \mathcal{B}, μ, T), with generator α, is isomorphic to the direct product of a positive-entropy Bernoulli system (\mathcal{B}, σ) and some other system (Y, S), then there is a generator β for (X, \mathcal{B}, μ, T) such that $\mathcal{F}^+(\beta) = \mathcal{T}^+(\beta) = \mathcal{T}^+$. Consequently, every K process with a direct Bernoulli factor has a super-K^+ generator (since then \mathcal{T}^+, the Pinsker algebra, is trivial). The idea of the proof is to construct a partition β with $F^+(\beta) \subset T^+(\beta)$, so that no new information is provided by counting β-symbols.
Super-K^+ generators

JPT-KP, 2004: If an ergodic system (X, \mathcal{B}, μ, T), with generator α, is isomorphic to the direct product of a positive-entropy Bernoulli system (B, σ) and some other system (Y, S), then there is a generator β for (X, \mathcal{B}, μ, T) such that $\mathcal{F}^+(\beta) = T^+(\beta) = T^+$. Consequently, every K process with a direct Bernoulli factor has a super-K^+ generator (since then T^+, the Pinsker algebra, is trivial).
Super-K^+ generators

JPT-KP, 2004: If an ergodic system (X, \mathcal{B}, μ, T), with generator α, is isomorphic to the direct product of a positive-entropy Bernoulli system (B, σ) and some other system (Y, S), then there is a generator β for (X, \mathcal{B}, μ, T) such that $F^+(\beta) = T^+(\beta) = T^+$.

Consequently, every K process with a direct Bernoulli factor has a super-K^+ generator (since then T^+, the Pinsker algebra, is trivial).

The idea of the proof is to construct a partition β with $F^+(\beta) \subset T^+(\beta)$, so that no new information is provided by counting β-symbols.
Ingredients of the proof

A key tool is
Ingredients of the proof

A key tool is

JPT, 1975: Every system is relatively K over its Pinsker factor:
Given $k \in \mathbb{N}$ and $\epsilon > 0$, for large enough n
Ingredients of the proof

A key tool is

JPT, 1975: Every system is relatively K over its Pinsker factor:

Given $k \in \mathbb{N}$ and $\epsilon > 0$, for large enough n

$$\beta^k_{-k} \perp^{\epsilon}_{\mathcal{P}(T)} \beta_n^\infty$$, i.e.,

$$|H(\beta^K_{-k}|\mathcal{P}(T)) + H(\beta_n^\infty|\mathcal{P}(T)) - H(\beta^k_{-k} \lor \beta_n^\infty|\mathcal{P}(T))| < \epsilon$$
Ingredients of the proof

A key tool is

JPT, 1975: Every system is relatively K over its Pinsker factor:

Given $k \in \mathbb{N}$ and $\epsilon > 0$, for large enough n

$$\beta^k_{-k} \perp^{\epsilon}_{\mathcal{P}(T)} \beta^\infty_n$$, i.e.,

$$| H(\beta^k_{-k} \mid \mathcal{P}(T)) + H(\beta^\infty_n \mid \mathcal{P}(T)) - H(\beta^k_{-k} \vee \beta^\infty_n \mid \mathcal{P}(T))| < \epsilon$$

This implies that if for all k, ϵ there is N such that if $n \geq N$ then

$$\beta^k_{-k} \perp^{\epsilon}_{\beta^\infty_n} \psi^n_0(\beta),$$
Ingredients of the proof

A key tool is

JPT, 1975: Every system is relatively K over its Pinsker factor:
Given $k \in \mathbb{N}$ and $\epsilon > 0$, for large enough n

$$\beta^k_{-k} \perp_{\mathcal{P}(T)} \beta^n \infty, \text{ i.e.,}$$

$$|H(\beta^k_{-k} | \mathcal{P}(T)) + H(\beta^n \infty | \mathcal{P}(T)) - H(\beta^k_{-k} \lor \beta^n \infty | \mathcal{P}(T))| < \epsilon$$

This implies that if for all k, ϵ there is N such that if $n \geq N$ then

$$\beta^k_{-k} \perp_{\beta^n \infty} \psi^n_0(\beta),$$

then $\beta^{-\infty} \perp_{\mathcal{P}(T)} \mathcal{F}^+(\beta)$,
Ingredients of the proof

A key tool is

JPT, 1975: Every system is relatively K over its Pinsker factor: Given $k \in \mathbb{N}$ and $\epsilon > 0$, for large enough n

\[
\beta^{-k}_k \perp_{\mathcal{P}(T)} \beta^{\infty}_n, \text{ i.e.,}
\]

\[
|H(\beta^k_{-k}|\mathcal{P}(T)) + H(\beta^{\infty}_n|\mathcal{P}(T)) - H(\beta^k_{-k} \lor \beta^{\infty}_n|\mathcal{P}(T))| < \epsilon
\]

This implies that if for all k, ϵ there is N such that if $n \geq N$ then

\[
\beta^{-k}_k \perp_{\beta^{\infty}_n} \psi^n_0(\beta),
\]

then \(\beta^{\infty}_{-\infty} \perp_{\mathcal{P}(T)} \mathcal{F}^+(\beta)\),

and hence \(\mathcal{F}^+(\beta) \subset \mathcal{P}(T) = \mathcal{T}^+(\beta)\).
Recoding

Suppose X, Y, B have generators α, γ, ρ, respectively.
Recoding

Suppose X, Y, B have generators α, γ, ρ, respectively.

We take an alphabet β_0 large enough that all γ-names can be matched by β_0-names of a particular kind, in particular permutations of a single β_0-name in which every symbol appears the same number of times.
Recoding

Suppose X, Y, B have generators α, γ, ρ, respectively.

We take an alphabet β_0 large enough that all γ-names can be matched by β_0-names of a particular kind, in particular permutations of a single β_0-name in which every symbol appears the same number of times.

We use a special marker block $W = 1^{tq}2^{tq} \cdots |\rho|^{tq}$. Appearances of W in sequences $\omega \in B$ cut \mathbb{Z} into marked and free intervals.
Recoding

Suppose X, Y, B have generators α, γ, ρ, respectively.

We take an alphabet β_0 large enough that all γ-names can be matched by β_0-names of a particular kind, in particular permutations of a single β_0-name in which every symbol appears the same number of times.

We use a special marker block $W = 1^{tq} 2^{tq} \cdots |\rho|^{tq}$.Appearances of W in sequences $\omega \in B$ cut \mathbb{Z} into marked and free intervals.

On each marked interval, where W appears in B, we do not change the B coding, but we change the Y coding so that each β_0 symbol appears the same number of times.
Coding free intervals

On each free interval, we recode the $\gamma \times \rho$ name by cutting into subintervals and using permutations of a string of all $\beta_0 \times \rho$ symbols (one of each symbol), plus we add one extra symbol, which depends only on the length of the free interval.
Coding free intervals

On each free interval, we recode the $\gamma \times \rho$ name by cutting into subintervals and using permutations of a string of all $\beta_0 \times \rho$ symbols (one of each symbol), plus we add one extra symbol, which depends only on the length of the free interval.

We also add filler symbols to make the lengths come out; $\beta = \beta_0$ plus a filler symbol.
Coding free intervals

On each free interval, we recode the $\gamma \times \rho$ name by cutting into subintervals and using permutations of a string of all $\beta_0 \times \rho$ symbols (one of each symbol), plus we add one extra symbol, which depends only on the length of the free interval.

We also add filler symbols to make the lengths come out; $\beta = \beta_0$ plus a filler symbol.

Now the β-symbol count across a union of free and marked intervals is constant on the marked intervals and a function of B, hence asymptotically adds no information to the ordinary tail.
Coding free intervals

On each free interval, we recode the $\gamma \times \rho$ name by cutting into subintervals and using permutations of a string of all $\beta_0 \times \rho$ symbols (one of each symbol), plus we add one extra symbol, which depends only on the length of the free interval.

We also add filler symbols to make the lengths come out; $\beta = \beta_0$ plus a filler symbol.

Now the β-symbol count across a union of free and marked intervals is constant on the marked intervals and a function of B, hence asymptotically adds no information to the ordinary tail.

If the count ends inside a marked or free interval, with high probability we have a bounded translate of a count across a complete union of intervals, so it is not too different.
Super-K generators for K systems

JPT, 2008: If (X, \mathcal{B}, μ, T) is ergodic, finite entropy, and weak Pinsker (for every $\epsilon > 0$, $X \approx B \times Y$ with B Bernoulli and $h(Y) < \epsilon$), then there is a finite generator α with $\mathcal{F}_\psi^\pm(\alpha) = \mathcal{P}(T)$.
Super-K generators for K systems

JPT, 2008: If (X, B, μ, T) is ergodic, finite entropy, and weak Pinsker (for every $\epsilon > 0$, $X \approx B \times Y$ with B Bernoulli and $h(Y) < \epsilon$), then there is a finite generator α with $\mathcal{F}_\psi^{\pm}(\alpha) = \mathcal{P}(T)$.

Corollary: If (X, B, μ, T) is K, it has a super-K^{\pm} generator.
Odometers

For the full shift on $A^\mathbb{N}$, the group Γ of finite coordinate changes has the invariant sets equal to \mathcal{T}^+.

Odometers

For the full shift on $\mathbb{A}^\mathbb{N}$, the group Γ of finite coordinate changes has the invariant sets equal to \mathcal{T}^+. The orbits are the same as those of the d-odometer.
Odometers

For the full shift on $A^\mathbb{N}$, the group Γ of finite coordinate changes has the invariant sets equal to \mathcal{T}^+. The orbits are the same as those of the d-odometer.

Similarly for a SFT Σ_M: \mathcal{T}^+ is the field of invariant sets for the stationary adic.
Odometers

For the full shift on $A^\mathbb{N}$, the group Γ of finite coordinate changes has the invariant sets equal to \mathcal{T}^+. The orbits are the same as those of the d-odometer.

Similarly for a SFT Σ_M: \mathcal{T}^+ is the field of invariant sets for the stationary adic.
Invariant measures

The unique invariant measure for the adic on a SFT assigns equal measure to all cylinder sets determined by paths from the root to a selected vertex.
Invariant measures

The unique invariant measure for the adic on a SFT assigns equal measure to all cylinder sets determined by paths from the root to a selected vertex.

The measure of maximal entropy on Σ_M assigns pretty much the same measure of all cylinder sets of a fixed length.
Graphs for the fine tail fields

For the fine tail fields $\mathcal{F}_{\psi}^+(\alpha)$, we form a graph whose vertices are the possible values of $\psi_0^n(x)$.
Graphs for the fine tail fields

For the fine tail fields $\mathcal{F}_\psi^+(\alpha)$, we form a graph whose vertices are the possible values of $\psi^n_0(x)$.

Suppose the values taken by ψ (assume it's a 1-block map) are the members of the alphabet $A = \{a_1, \ldots, a_r\} \subset \mathbb{Z}^d$ (could be a multiset).
Graphs for the fine tail fields

For the fine tail fields $\mathcal{F}_\psi^+(\alpha)$, we form a graph whose vertices are the possible values of $\psi_0^n(x)$.

Suppose the values taken by ψ (assume it’s a 1-block map) are the members of the alphabet $A = \{a_1, \ldots, a_r\} \subset \mathbb{Z}^d$ (could be a multiset).

The vertices are 0 and all $s_n(x) = \sum_{k=1}^n \psi(x_k)$,
Graphs for the fine tail fields

For the fine tail fields $\mathcal{F}_\psi^+(\alpha)$, we form a graph whose vertices are the possible values of $\psi^n_0(x)$.

Suppose the values taken by ψ (assume it’s a 1-block map) are the members of the alphabet $A = \{a_1, \ldots, a_r\} \subset \mathbb{Z}^d$ (could be a multiset).

The vertices are 0 and all $s_n(x) = \sum_{k=1}^{n} \psi(x_k)$, with $x = (x_k) \in A^\mathbb{N}$ giving the edge labels of a path in \mathbb{Z}^d:
Graphs for the fine tail fields

For the *fine tail fields* $\mathcal{F}^+_\psi(\alpha)$, we form a graph whose vertices are the possible values of $\psi^n_0(x)$.

Suppose the values taken by ψ (assume it’s a 1-block map) are the members of the alphabet $A = \{a_1, \ldots, a_r\} \subset \mathbb{Z}^d$ (could be a multiset).

The vertices are 0 and all $s_n(x) = \sum_{k=1}^{n} \psi(x_k)$,

with $x = (x_k) \in A^\mathbb{N}$ giving the *edge labels* of a path in \mathbb{Z}^d:

x_k labels the edge from $s_{k-1}(x)$ to $s_k(x)$.
Adic transformations

The fine tail equivalence relation on $A^\mathbb{N}$ has $x \sim y$ if there is N such that $s_n(x) = s_n(y)$ for all $n \geq N$: the paths are cofinal—eventually coincide.
Adic transformations

The fine tail equivalence relation on $A^\mathbb{N}$ has $x \sim y$ if there is N such that $s_n(x) = s_n(y)$ for all $n \geq N$: the paths are cofinal—eventually coincide.

The equivalence classes are the orbits of any adic (Bratteli-Vershik) transformation that is defined on most of $A^\mathbb{N}$ once the incoming edges to each vertex are given a total order.
Adic transformations

The fine tail equivalence relation on $A^\mathbb{N}$ has $x \sim y$ if there is N such that $s_n(x) = s_n(y)$ for all $n \geq N$: the paths are cofinal—eventually coincide.

The equivalence classes are the orbits of any adic (Bratteli-Vershik) transformation that is defined on most of $A^\mathbb{N}$ once the incoming edges to each vertex are given a total order.

The invariant sets of each such adic transformation are $\mathcal{F}_\psi^+(\alpha)$.
Adic transformations

The fine tail equivalence relation on $A^\mathbb{N}$ has $x \sim y$ if there is N such that $s_n(x) = s_n(y)$ for all $n \geq N$: the paths are cofinal—eventually coincide.

The equivalence classes are the orbits of any adic (Bratteli-Vershik) transformation that is defined on most of $A^\mathbb{N}$ once the incoming edges to each vertex are given a total order.

The invariant sets of each such adic transformation are $\mathcal{F}_\psi^+(\alpha)$.

Thus these systems visually present the future fine tail fields—we can see the corresponding equivalence relations.
The Pascal walk
The Delannoy walk
The Delannoy graph
Xavier Méla’s X_3 walk
Systems that present tail fields

Xavier Méla’s X_3
Frick’s $2x + 1$ walk
Frick’s $2x + 1$ system
A walk with 4 vectors
An isotropic adic system based on a walk with 4 vectors
Ordering incoming edges to define the transformation
Some questions about the systems

Ergodic measures

Identifying the invariant measures
Ergodic measures

Identifying the invariant measures depends on knowing the \textit{path counts} \(\dim(v, w) = \text{number of paths from } v \text{ to } w \).
Ergodic measures

Identifying the invariant measures depends on knowing the path counts $\dim(v, w) = \text{number of paths from } v \text{ to } w$.

For Pascal, $\binom{n - n_0}{k - k_0}$.
Ergodic measures

Identifying the invariant measures depends on knowing the *path counts* $\dim(v, w) = \text{number of paths from } v \text{ to } w$.

For Pascal, $\binom{n - n_0}{k - k_0}$.

For Delannoy, $D(i, j) = \sum_{d=0}^{j} 2^d \binom{id}{d} \binom{jd}{d}$.

Some questions about the systems
Ergodic measures

Identifying the invariant measures depends on knowing the *path counts* \(\dim(v, w) = \text{number of paths from } v \text{ to } w \).

For Pascal, \(\binom{n - n_0}{k - k_0} \).

For Delannoy, \(D(i, j) = \sum_{d=0}^{j} 2^d \binom{i}{d} \binom{j}{d} \).

For these *isotropic systems*, the ergodic measures are an \((r - 1)\)-parameter family of Bernoulli measures given by specifying weights \(p_i \) on each of the possible walk steps \(a_i \).
Ergodic measures

Identifying the invariant measures depends on knowing the path counts \(\dim(v, w) = \) number of paths from \(v \) to \(w \).

For Pascal, \(\binom{n - n_0}{k - k_0} \).

For Delannoy, \(D(i, j) = \sum_{d=0}^{j} 2^d \binom{i}{d} \binom{j}{d} \).

For these isotropic systems, the ergodic measures are an \((r - 1) \)-parameter family of Bernoulli measures given by specifying weights \(p_i \) on each of the possible walk steps \(a_i \) (cf. Hewitt-Savage, de Finetti.)
Expansiveness and complexity

Coding the adic transformation by the first edge (or initial segment of a fixed length): *expansiveness*.
Expansiveness and complexity

Coding the adic transformation by the first edge (or initial segment of a fixed length): *expansiveness*.

It is faithful for the Pascal (Méla), Pascal-based (Frick), Delannoy, and some others.
Expansiveness and complexity

Coding the adic transformation by the first edge (or initial segment of a fixed length): *expansiveness*.

It is faithful for the Pascal (Méla), Pascal-based (Frick), Delannoy, and some others.

We are trying to produce a general argument as well as describe the fibers in cases where the coding is not faithful.
Expansiveness and complexity

Coding the adic transformation by the first edge (or initial segment of a fixed length): *expansiveness*.

It is faithful for the Pascal (Méla), Pascal-based (Frick), Delannoy, and some others.

We are trying to produce a general argument as well as describe the fibers in cases where the coding is not faithful.

We want to calculate the *complexity* $p(n) = \text{number of } n\text{-blocks in the coding, asymptotically.}$
Expansiveness and complexity

Coding the adic transformation by the first edge (or initial segment of a fixed length): *expansiveness*.

It is faithful for the Pascal (Méla), Pascal-based (Frick), Delannoy, and some others.

We are trying to produce a general argument as well as describe the fibers in cases where the coding is not faithful.

We want to calculate the complexity $p(n) = \text{number of } n\text{-blocks in the coding, asymptotically.}$

For the Pascal, $p(n) \sim n^3/6$ (Méla).
Some questions about the systems

Expansiveness and complexity
Coding the adic transformation by the first edge (or initial segment of a fixed length): expansiveness.

It is faithful for the Pascal (Méla), Pascal-based (Frick), Delannoy, and some others.

We are trying to produce a general argument as well as describe the fibers in cases where the coding is not faithful.

We want to calculate the complexity $p(n) = \text{number of } n\text{-blocks in the coding, asymptotically}.$

For the Pascal, $p(n) \sim n^3/6$ (Méla).

For the Delannoy, $p(n) \sim n^3/24$ (Frick).
Some questions about the systems

Varying orders

These properties depend on the choice of *order* of the incoming edges.

What is the maximum complexity over all possible orders?

What is the expected complexity if the orders at the vertices are chosen independently according to a fixed Bernoulli measure?

It seems that for the Pascal, for every order $p(n)$ is asymptotically no more than $n^{5/3}$.
Varying orders

These properties depend on the choice of order of the incoming edges.

What is the maximum complexity over all possible orders?
Some questions about the systems

Varying orders

These properties depend on the choice of order of the incoming edges.

What is the maximum complexity over all possible orders?

What is the expected complexity if the orders at the vertices are chosen independently according to a fixed Bernoulli measure?

It seems that for the Pascal, for every order \(p(n) \) is asymptotically no more than \(n^{5/3} \).
Varying orders

These properties depend on the choice of order of the incoming edges.

What is the maximum complexity over all possible orders?

What is the expected complexity if the orders at the vertices are chosen independently according to a fixed Bernoulli measure?

It seems that for the Pascal, for every order $p(n)$ is asymptotically no more than $n^5/3$.
Some questions about the systems

More questions

There are many open dynamical properties for these adic systems, each with one of its invariant measures.
Some questions about the systems

More questions

There are many open dynamical properties for these adic systems, each with one of its invariant measures and for the coded subshifts.
Some questions about the systems

More questions

There are many open dynamical properties for these adic systems, each with one of its invariant measures and for the coded subshifts.

Joinings, rank, spectrum, loosely Bernoulli, etc.
Some questions about the systems

More questions

There are many open dynamical properties for these adic systems, each with one of its invariant measures and for the coded subshifts.

Joinings, rank, spectrum, loosely Bernoulli, etc.

When the simple walks that give rise to isotropic adic systems are allowed to evolve according to reinforcement schemes, even more interesting systems arise,
Some questions about the systems

More questions

There are many open dynamical properties for these adic systems, each with one of its invariant measures and for the coded subshifts.

Joinings, rank, spectrum, loosely Bernoulli, etc.

When the simple walks that give rise to isotropic adic systems are allowed to evolve according to reinforcement schemes, even more interesting systems arise, for example the *Eulerian system* studied by Frick-Keane-KP-Salama, Frick-KP, KP-Varchenko, Gnedenin-Olshanski.
Some questions about the systems

The Eulerian adic
Some questions about the systems

The Eulerian adic with path counts
Some questions about the systems

C* algebra connections

Study of such systems leads to interesting combinatorial questions and connections with C* algebras and group representations (Kerov).
Some questions about the systems

C^* algebra connections

Study of such systems leads to interesting combinatorial questions and connections with C^* algebras and group representations (Kerov).

Indeed, the Pascal graph is an example of an AF C^* algebra (the “CCR" algebra) in Bratteli’s 1972 paper.