Some Sturmian Symbolic Dynamics

Karl Petersen

University of North Carolina at Chapel Hill
Overview

We consider some recent developments regarding

- nonperiodic Sturmian 0,1 sequences
Overview

We consider some recent developments regarding

- nonperiodic \textit{Sturmian} $0,1$ sequences

- and also \textit{periodic} “Sturmian” sequences, involving
Overview

We consider some recent developments regarding

- nonperiodic *Sturmian* 0,1 sequences
- and also *periodic* “Sturmian" sequences, involving
- lexicographic order
Overview

We consider some recent developments regarding
- nonperiodic Sturmian 0,1 sequences
- and also periodic “Sturmian" sequences, involving
- lexicographic order
- Farey diagrams

Queen Mary, U. of London, June 22, 2009 – p.2/37
Overview

We consider some recent developments regarding

- nonperiodic Sturmian 0,1 sequences
- and also periodic “Sturmian" sequences, involving
- lexicographic order
- Farey diagrams
- adic transformations
Overview

We consider some recent developments regarding
- nonperiodic Sturmian 0,1 sequences
- and also periodic “Sturmian" sequences, involving
- lexicographic order
- Farey diagrams
- adic transformations
- ideals in C^* algebras.
Characterizations of nonperiodic Sturmian sequences

Minimal complexity: # of \(n \)-blocks = \(P(n) = n + 1 \) for all \(n \).
Characterizations of nonperiodic Sturmian sequences

- **Minimal complexity**: # of \(n\)-blocks = \(P(n) = n + 1\) for all \(n\).
- **Balanced**: For any two blocks \(u, v\) of the same length, \(||u|_1 - |v|_1| \leq 1\).
Characterizations of nonperiodic Sturmian sequences

- **Minimal complexity**: \# of \(n\)-blocks = \(P(n) = n + 1\) for all \(n\).
- **Balanced**: For any two blocks \(u, v\) of the same length, \(|u|_1 - |v|_1| \leq 1\).
- **Codings of irrational rotations**: There are \(x\) and irrational \(\theta\) such that for all \(n\), \(\omega(n) = 1_{[1-\theta, 1]}(x + n\theta)\) or for all \(n\), \(\omega(n) = 1_{(1-\theta, 1]}(x + n\theta)\). (A *Sturmian system* is then the closure of the orbit of \(\omega\) under the shift. It is minimal, uniquely ergodic, and isomorphic to the irrational translation.)
Characterizations of nonperiodic Sturmian sequences

- Minimal complexity: # of n-blocks $= P(n) = n + 1$ for all n.
- Balanced: For any two blocks u, v of the same length, $||u|_1 - |v|_1| \leq 1$.
- Codings of irrational rotations: There are x and irrational θ such that for all n, $\omega(n) = 1_{[1 - \theta, 1)}(x + n\theta)$ or for all n, $\omega(n) = 1_{(1 - \theta, 1]}(x + n\theta)$. (A Sturmian system is then the closure of the orbit of ω under the shift. It is minimal, uniquely ergodic, and isomorphic to the irrational translation.)
- Staircase coding: There are x and irrational θ such that for all n, $\omega(n) = \lfloor x + (n + 1)\theta \rfloor - \lfloor x + n\theta \rfloor$ or for all n, $\omega(n) = \lceil x + (n + 1)\theta \rceil - \lceil x + n\theta \rceil$. (Look at jumps between lattice points above or below line through origin of slope θ. Get jump (of floor) when $n\theta$ is in $[1 - \theta, 1)$.)
Upper and lower staircase codings, by jumps

1 0 1 0 1 0 1 0 0

0 0 1 0 1 0 1 0 0

0 0 1 0 1 0 1 0 1
Farey, Stern-Brocot, or C. Haros Diagram
Properties of Farey diagram

- Generated by adding numerators and denominators.
Properties of Farey diagram

- Generated by adding numerators and denominators.
- Every rational in \([0, 1]\) appears, generated exactly once, automatically in lowest terms.
Properties of Farey diagram

- Generated by adding numerators and denominators.
- Every rational in \([0, 1]\) appears, generated exactly once, automatically in lowest terms.
- Two Farey neighbors, \(p/q\) and \(p'/q'\), satisfy \(p'q - q'p = \pm 1\).
Properties of Farey diagram

- Generated by adding numerators and denominators.
- Every rational in \([0, 1]\) appears, generated exactly once, automatically in lowest terms.
- Two Farey neighbors, \(p/q\) and \(p'/q'\), satisfy \(p'q - q'p = \pm 1\).
- Infinite paths give best one-sided approximations to irrationals. When switch sides, have best two-sided approximations, the ordinary continued fractions.
Properties of Farey diagram

- Generated by adding numerators and denominators.
- Every rational in \([0, 1]\) appears, generated exactly once, automatically in lowest terms.
- Two Farey neighbors, \(p/q\) and \(p'/q'\), satisfy \(p'q - q'p = \pm 1\).
- Infinite paths give best one-sided approximations to irrationals. When switch sides, have best two-sided approximations, the ordinary continued fractions.
- I learned about the Farey shift from papers of Jeff Lagarias and about this “Farey diagram with memory" from Oliver Jenkinson and Florin Boca.
Ordinary and intermediate continued fractions

Let $B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
Ordinary and intermediate continued fractions

Let $B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Ordinary continued fractions for $x = [a_1, a_2, \ldots]$:

$$
\begin{pmatrix} p_{n-1} & p_n \\ q_{n-1} & q_n \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & a_1 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ 1 & a_n \end{pmatrix}
$$
Ordinary and intermediate continued fractions

Let \(B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \), \(A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \).

Ordinary continued fractions for \(x = [a_1, a_2, \ldots] \):

\[
\begin{pmatrix} p_{n-1} & p_n \\ q_{n-1} & q_n \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & a_1 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ 1 & a_n \end{pmatrix}
\]

\[= B A^{a_1-1} B A^{a_2-1} \cdots B A^{a_n-1} \]
Ordinary and intermediate continued fractions

Let \(B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \), \(A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \).

Ordinary continued fractions for \(x = [a_1, a_2, \ldots] \):

\[
\begin{pmatrix} p_{n-1} & p_n \\ q_{n-1} & q_n \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & a_1 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ 1 & a_n \end{pmatrix}
\]

\[= B A^{a_1-1} B A^{a_2-1} \cdots B A^{a_n-1}\]

The intermediate products give the intermediate, Farey, approximations.
Ordinary and intermediate continued fractions

Let \(B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \), \(A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \).

Ordinary continued fractions for \(x = [a_1, a_2, \ldots] \):

\[
\begin{pmatrix} p_{n-1} & p_n \\ q_{n-1} & q_n \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & a_1 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ 1 & a_n \end{pmatrix}
\]

\(= B A^{a_1 - 1} B A^{a_2 - 1} \cdots B A^{a_n - 1} \)

The intermediate products give the intermediate, Farey, approximations.

\(x = [2, 3, 2, 4, \ldots] \approx 1, \frac{1}{2}, \frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9}, \frac{7}{16}, \frac{10}{23}, \frac{17}{39}, \frac{24}{55}, \frac{31}{71}, \ldots \)
Farey Diagram of Blocks
The word at position corresponding to fraction $\frac{p}{p+q}$ has p 1’s and q 0’s (hence length $p+q$).
Balanced periodic sequences

- The word at position corresponding to fraction \(\frac{p}{p+q} \) has \(p \) 1’s and \(q \) 0’s (hence length \(p + q \)).
- The periodic sequence formed by each of these words is balanced.
Balanced periodic sequences

The word at position corresponding to fraction \(\frac{p}{p+q} \) has \(p \) 1’s and \(q \) 0’s (hence length \(p + q \)).

The periodic sequence formed by each of these words is balanced.

These words are Lyndon words—primitive and lexicographically minimal among their rotations.
Balanced periodic sequences

The word at position corresponding to fraction \(\frac{p}{p+q} \) has \(p \) 1’s and \(q \) 0’s (hence length \(p + q \)).

The periodic sequence formed by each of these words is balanced.

These words are Lyndon words—primitive and lexicographically minimal among their rotations.

They also increase lexicographically left to right in each row.
Balanced periodic sequences

- The word at position corresponding to fraction \(\frac{p}{p+q} \) has \(p \) 1’s and \(q \) 0’s (hence length \(p + q \)).
- The periodic sequence formed by each of these words is balanced.
- These words are Lyndon words—primitive and lexicographically minimal among their rotations.
- They also increase lexicographically left to right in each row.
- Every balanced word of length \(p + q \) with exactly \(p \) 1’s is a rotation of the word in the Farey diagram that corresponds to \(\frac{p}{p+q} \). There are exactly \(p + q \) of them.
Balanced periodic sequences

- The word at position corresponding to fraction $\frac{p}{p+q}$ has p 1’s and q 0’s (hence length $p + q$).
- The periodic sequence formed by each of these words is balanced.
- These words are Lyndon words—primitive and lexicographically minimal among their rotations.
- They also increase lexicographically left to right in each row.
- Every balanced word of length $p + q$ with exactly p 1’s is a rotation of the word in the Farey diagram that corresponds to $\frac{p}{p+q}$. There are exactly $p + q$ of them.
- Infinite nonperiodic Sturmian sequences are found as “ends” of infinite paths in the Farey diagram.
Farey Diagram of Blocks

0

0 0001 001 001001 00101 0010101 01 0101011 01011 01011011 011 0110111 0111 01111 1

Queen Mary, U. of London, June 22, 2009 – p.10/37
Viewed as dyadic expansions, the words in the Farey diagram correspond to periodic orbits under the map $Tz = z^2$ on the circle. Each orbit is contained in a closed semicircle, and T preserves the cyclic order on the circle.
Viewed as dyadic expansions, the words in the Farey diagram correspond to periodic orbits under the map $Tz = z^2$ on the circle. Each orbit is contained in a closed semicircle, and T preserves the cyclic order on the circle.

The invariant measures coming from Sturmian minimal sets minimize the integrals of strictly convex functions (over all T-invariant measures with a fixed frequency of 1’s) (Jenkinson 2007).
Times 2 map

Viewed as dyadic expansions, the words in the Farey diagram correspond to periodic orbits under the map $Tz = z^2$ on the circle. Each orbit is contained in a closed semicircle, and T preserves the cyclic order on the circle.

The invariant measures coming from Sturmian minimal sets minimize the integrals of strictly convex functions (over all T-invariant measures with a fixed frequency of 1’s) (Jenkinson 2007).

Why does the concatenation work?

Prop: If $u < v$ are Lyndon words, then uv is Lyndon.
Why does the concatenation work?

Prop: If $u < v$ are Lyndon words, then uv is Lyndon.

The following are equivalent:

- Two integer vectors (q, p) and (q', p') span the integer lattice \mathbb{Z}^2.
- $pq' - qp' = \pm 1$.
Why does the concatenation work?

Prop: If \(u < v \) are Lyndon words, then \(uv \) is Lyndon.

The following are equivalent:

1. Two integer vectors \((q, p)\) and \((q', p')\) span the integer lattice \(\mathbb{Z}^2 \).
2. \(pq' - qp' = \pm 1 \).
3. The parallelogram spanned by the vectors \((q, p)\) and \((q', p')\) has no point of the integer lattice \(\mathbb{Z}^2 \) in its interior.
Why does the concatenation work?

Prop: If $u < v$ are Lyndon words, then uv is Lyndon.

The following are equivalent:

- Two integer vectors (q, p) and (q', p') span the integer lattice \mathbb{Z}^2.
- $pq' - qp' = \pm 1$.
- The parallelogram spanned by the vectors (q, p) and (q', p') has no point of the integer lattice \mathbb{Z}^2 in its interior.
Parallelogram containing no interior lattice points

(2,1) (5,2)
First part of coding of (7,3) follows (5,2)
Last part of coding of (7,3) follows translate of (2,1)
Bratteli Diagrams

Infinite downward directed graphs

Level \((n)\)

\[k = 0 : k = 1 \]
Bratteli Diagrams

- Infinite downward directed graphs
- Vertices, denoted by (n, k), are partitioned into levels, V_n

Level (n)

$k = 0 : k = 1$
Bratteli Diagrams

- Infinite downward directed graphs
- Vertices, denoted by \((n, k)\), are partitioned into levels, \(V_n\)
- Edges connect vertices in consecutive levels

Level \((n)\)

\[
\begin{array}{c}
0 \\
1 \\
2 \\
3 \\
k = 0 \quad : \quad k = 1
\end{array}
\]
Bratteli Diagrams

- Infinite downward directed graphs
- Vertices, denoted by \((n, k)\), are partitioned into levels, \(V_n\)
- Edges connect vertices in consecutive levels
- **Incidence matrices** describe the number of edges connecting levels \(n\) and \(n + 1\)

\[
\begin{align*}
\text{Level } (n) & \\
0 & \quad A_1 = \begin{bmatrix} 1 & 1 \end{bmatrix} \\
1 & \\
2 & A_2 = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \\
3 & A_3 = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}
\end{align*}
\]

\(k = 0 : k = 1\)
The Path Space

\[X \] is the space of infinite edge paths down from the root.
The Path Space

- X is the space of infinite edge paths down from the root.
- For $x = x_0 x_1 x_2 \cdots \in X$ denote by x_i the i’th edge of x, which connects a vertex in level i to a vertex in level $i + 1$.
The Path Space

- X is the space of infinite edge paths down from the root.
- For $x = x_0 x_1 x_2 \cdots \in X$ denote by x_i the i’th edge of x, which connects a vertex in level i to a vertex in level $i + 1$.
- X is a compact metric space with metric given by: For $x, y \in X$, $d(x, y) = 2^{-i}$ where $i = \inf\{j | x_j \neq y_j\}$.
Edge ordering yields a partial order on the set of paths
Edge ordering yields a partial order on the set of paths
Edge ordering yields a partial order on the set of paths
Edge ordering yields a partial order on the set of paths
Edge ordering yields a partial order on the set of paths

Define $y > x$ if $y_n > x_n$ the last time they differ.
The adic transformation

\[T : X \to X, \quad T x = \text{smallest } y > x \text{ if there is one.} \]
The adic transformation

\[T : X \to X, \quad T(x) = \text{smallest } y > x \text{ if there is one.} \]
The adic transformation

\[T : X \to X, \; T x = \text{smallest } y > x \text{ if there is one.} \]
The adic transformation

\(T : X \rightarrow X, \ T x = \text{smallest } y > x \text{ if there is one.} \)
The adic transformation

\[T : X \rightarrow X, \quad T_x = \text{smallest } y > x \text{ if there is one.} \]

Thanks to Sarah Bailey Frick for this animated introduction.
Ideals in AF algebras

An AF algebra \mathcal{A} is the closure of the increasing union of finite-dimensional algebras \mathcal{A}_n, each the direct sum of the matrix algebras at level n of the Bratteli diagram.
Ideals in AF algebras

An AF algebra \mathcal{A} is the closure of the increasing union of finite-dimensional algebras \mathcal{A}_n, each the direct sum of the matrix algebras at level n of the Bratteli diagram.

The edges of the diagram indicate embeddings of lower-dimensional matrix algebras in higher-dimensional ones.
Ideals in AF algebras

An AF algebra \mathcal{A} is the closure of the increasing union of finite-dimensional algebras \mathcal{A}_n, each the direct sum of the matrix algebras at level n of the Bratteli diagram.

The edges of the diagram indicate embeddings of lower-dimensional matrix algebras in higher-dimensional ones.

A (two-sided norm-closed) ideal in \mathcal{A} is determined by a subdiagram Λ with the following two properties:
Ideals in AF algebras

An AF algebra \mathcal{A} is the closure of the increasing union of finite-dimensional algebras \mathcal{A}_n, each the direct sum of the matrix algebras at level n of the Bratteli diagram.

The edges of the diagram indicate embeddings of lower-dimensional matrix algebras in higher-dimensional ones.

A (two-sided norm-closed) ideal in \mathcal{A} is determined by a subdiagram Λ with the following two properties:

Closed under successors: If $(n, i) \in \Lambda$ and $(n, i) \searrow (n + 1, j)$, then $(n + 1, j) \in \Lambda$;
An AF algebra \mathcal{A} is the closure of the increasing union of finite-dimensional algebras \mathcal{A}_n, each the direct sum of the matrix algebras at level n of the Bratteli diagram.

The edges of the diagram indicate embeddings of lower-dimensional matrix algebras in higher-dimensional ones.

A (two-sided norm-closed) ideal in \mathcal{A} is determined by a subdiagram Λ with the following two properties:

Closed under successors: If $(n, i) \in \Lambda$ and $(n, i) \prec (n + 1, j)$, then $(n + 1, j) \in \Lambda$;

Closed under ancestors: If $(n + 1, j) \in \Lambda$ for all j such that $(n, i) \prec (n + 1, j)$, then $(n, i) \in \Lambda$.
Ideal conditions
Ideal conditions

\[(n, i) \rightarrow (n + 1, j)\]
Ideal conditions

\[(n, i) \rightarrow (n + 1, j)\]
Ideal conditions

\[(n, i)\] → \[(n + 1, j)\]

\[(n + 1, j_1)\] → \[(n, i)\]
\[(n + 1, j_2)\] → \[(n, i)\]
\[\ldots\] → \[(n, i)\]
\[(n + 1, j_r)\] → \[(n, i)\]
\[\ldots\] → \[(n, i)\]
\[(n + 1, j_s)\] → \[(n, i)\]
Ideal conditions

\[(n, i) \rightarrow (n + 1, j)\]

\[(n + 1, j_1) \quad (n + 1, j_2) \quad \cdots \quad (n + 1, j_r) \quad \cdots \quad (n + 1, j_s)\]
A (two-sided norm-closed) ideal $I \subseteq \mathcal{A}$ is **primitive** if and only if there are not ideals I_1, I_2 in \mathcal{A}, both different from I, such that $I = I_1 \cap I_2$.
A (two-sided norm-closed) ideal $I \subset \mathcal{A}$ is primitive if and only if there are not ideals I_1, I_2 in \mathcal{A}, both different from I, such that $I = I_1 \cap I_2$.

In terms of the diagram Λ determining I, this means that if $(n, i), (m, j) \notin \Lambda$, then there are $p \geq n, m$ and $(p, k) \notin \Lambda$ such that $(n, i) \uparrow (p, k)$ and $(m, j) \uparrow (p, k)$.
A (two-sided norm-closed) ideal \(I \subset \mathcal{A} \) is primitive if and only if there are not ideals \(I_1, I_2 \) in \(\mathcal{A} \), both different from \(I \), such that \(I = I_1 \cap I_2 \).

In terms of the diagram \(\Lambda \) determining \(I \), this means that if \((n, i), (m, j) \notin \Lambda\), then there are \(p \geq n, m \) and \((p, k) \notin \Lambda\) such that \((n, i) \not\prec (p, k)\) and \((m, j) \not\prec (p, k)\).
A (two-sided norm-closed) ideal $I \subset \mathcal{A}$ is **primitive** if and only if there are not ideals I_1, I_2 in \mathcal{A}, both different from I, such that $I = I_1 \cap I_2$.

In terms of the diagram Λ determining I, this means that if $(n, i), (m, j) \notin \Lambda$, then there are $p \geq n, m$ and $(p, k) \notin \Lambda$ such that $(n, i) \searrow (p, k)$ and $(m, j) \searrow (p, k)$.
A (two-sided norm-closed) ideal $I \subset \mathcal{A}$ is primitive if and only if there are not ideals I_1, I_2 in \mathcal{A}, both different from I, such that $I = I_1 \cap I_2$.

In terms of the diagram Λ determining I, this means that if $(n, i), (m, j) \notin \Lambda$, then there are $p \geq n, m$ and $(p, k) \notin \Lambda$ such that $(n, i) \searrow (p, k)$ and $(m, j) \searrow (p, k)$.

$$\begin{array}{c}
(n, i) \\
\downarrow \\
\searrow \ \\
(p, k) \\
\uparrow \\
(m, j) \\
\end{array}$$
Primitive ideals in \mathcal{A}

A (two-sided norm-closed) ideal $I \subset \mathcal{A}$ is primitive if and only if there are not ideals I_1, I_2 in \mathcal{A}, both different from I, such that $I = I_1 \cap I_2$.

In terms of the diagram Λ determining I, this means that if $(n, i), (m, j) \notin \Lambda$, then there are $p \geq n, m$ and $(p, k) \notin \Lambda$ such that $(n, i) \nearrow (p, k)$ and $(m, j) \nearrow (p, k)$.
Ideals and invariant sets

Ideals of an AF algebra correspond to closed invariant sets of the Bratteli-Vershik transformation on the path space of the diagram.
Ideals and invariant sets

- Ideals of an AF algebra correspond to closed invariant sets of the Bratteli-Vershik transformation on the path space of the diagram.

- Primitive ideals of an AF algebra correspond to topologically transitive closed invariant sets of the Bratteli-Vershik transformation on the path space of the diagram.
Half of Farey diagram
Subadics of the Farey diagram

Regard the Farey diagram as a Bratteli-Vershik diagram, with the adic transformation on the metric space of infinite paths.
Subadics of the Farey diagram

Regard the Farey diagram as a Bratteli-Vershik diagram, with the adic transformation on the metric space of infinite paths.

The following observations were stimulated by a talk by O. Jenkinson, are based on papers by O. Bratteli and F. Boca, and were developed in conversations with T. de la Rue and E. Janvresse.
Subadics of the Farey diagram

Regard the Farey diagram as a Bratteli-Vershik diagram, with the adic transformation on the metric space of infinite paths.

The following observations were stimulated by a talk by O. Jenkinson, are based on papers by O. Bratteli and F. Boca, and were developed in conversations with T. de la Rue and E. Janvresse.

For rational rotation number θ (the frequency of 1’s), there are 3 topologically transitive subadics, each containing a unique minimal set, isomorphic to a translation on a finite cyclic group.
Regard the Farey diagram as a Bratteli-Vershik diagram, with the adic transformation on the metric space of infinite paths.

The following observations were stimulated by a talk by O. Jenkinson, are based on papers by O. Bratteli and F. Boca, and were developed in conversations with T. de la Rue and E. Janvresse.

For rational rotation number θ (the frequency of 1’s), there are 3 topologically transitive subadics, each containing a unique minimal set, isomorphic to a translation on a finite cyclic group.

For irrational rotation number θ, there is a single minimal subadic, isomorphic to the Sturmian system with that number.
Subadics of the Farey diagram

Regard the Farey diagram as a Bratteli-Vershik diagram, with the adic transformation on the metric space of infinite paths.

The following observations were stimulated by a talk by O. Jenkinson, are based on papers by O. Bratteli and F. Boca, and were developed in conversations with T. de la Rue and E. Janvresse.

For rational rotation number θ (the frequency of 1’s), there are 3 topologically transitive subadics, each containing a unique minimal set, isomorphic to a translation on a finite cyclic group.

For irrational rotation number θ, there is a single minimal subadic, isomorphic to the Sturmian system with that number.

These closed invariant subsets correspond to primitive ideals of the approximately finite C^* algebra determined by the Farey Bratteli diagram.
Farey diagram again
The orbit of $\frac{1}{3} \sim 001001001001 \cdots = \frac{1}{7}$
Mapping $1/3 \sim 001001001001 \cdots = 1/7$
Mapping \(1/3 \sim 001001001001 \cdots = 1/7\)
Mapping $1/3 \sim 001001001001 \cdots = 1/7$
An orbit forward asymptotic to that of $\frac{1}{3} \sim \frac{1}{7}$
An orbit forward asymptotic to that of $1/3 \sim 1/7$
An orbit forward asymptotic to that of $1/3 \sim 1/7$
An orbit forward asymptotic to that of $1/3 \sim 1/7$
An orbit forward asymptotic to that of $1/3 \sim 1/7$
The diagram (non-red) of one ideal for $\frac{1}{3} \sim 001 \sim \frac{1}{7}$
The diagram (non-red) of another ideal for $1/3 \sim 001 \sim 1/7$
Ideal and orbit closure for $\theta = [2, 3, 2, 4, \ldots]$
β-shifts

Fix $\beta > 1$, let $d = \lceil \beta \rceil$, and $D = \{0, 1, \ldots, d - 1\}$.
\section*{\textbf{β-shifts}}

- Fix $\beta > 1$, let $d = \lceil \beta \rceil$, and $D = \{0, 1, \ldots, d - 1\}$.
- Let $\Sigma^+_{\beta} \subset D^N$ denote the closure of the set of all greedy expansions base β of all $x \in [0, 1]$,

$$x = \frac{a_1}{\beta} + \frac{a_2}{\beta^2} + \ldots$$
\(\beta \)-shifts

- Fix \(\beta > 1 \), let \(d = \lceil \beta \rceil \), and \(D = \{0, 1, \ldots, d - 1\} \).
- Let \(\Sigma_\beta^+ \subset D^\mathbb{N} \) denote the closure of the set of all greedy expansions base \(\beta \) of all \(x \in [0, 1] \),

\[
x = \frac{a_1}{\beta} + \frac{a_2}{\beta^2} + \ldots
\]

- \((\Sigma_\beta^+, \sigma) \) is a symbolic coding (lift) of the \(\beta \)-transformation \(T_\beta : [0, 1] \to [0, 1] \) defined by \(T_\beta x = \beta x \mod 1 \).
\(\beta\)-shifts

- Fix \(\beta > 1\), let \(d = \lceil \beta \rceil\), and \(D = \{0, 1, \ldots, d - 1\}\).
- Let \(\Sigma^+_\beta \subset D^\mathbb{N}\) denote the closure of the set of all greedy expansions base \(\beta\) of all \(x \in [0, 1]\),

\[
x = \frac{a_1}{\beta} + \frac{a_2}{\beta^2} + \ldots
\]

- \((\Sigma^+_\beta, \sigma)\) is a symbolic coding (lift) of the \(\beta\)-transformation \(T_\beta : [0, 1] \rightarrow [0, 1]\) defined by \(T_\beta x = \beta x \mod 1\).
- If the expansion \(a_1a_2\ldots\) of 1 base \(\beta\) is nonterminating, we put \(e_\beta(1) = a_1a_2\ldots\).
\(\beta\)-shifts

- **Fix** \(\beta > 1\), let \(d = \lceil \beta \rceil\), and \(D = \{0, 1, \ldots, d - 1\}\).
- Let \(\Sigma^+_{\beta} \subset D^\mathbb{N}\) denote the closure of the set of all greedy expansions base \(\beta\) of all \(x \in [0, 1]\),

\[
x = \frac{a_1}{\beta} + \frac{a_2}{\beta^2} + \ldots
\]

- \((\Sigma^+_{\beta}, \sigma)\) is a symbolic coding (lift) of the \(\beta\)-transformation \(T_{\beta} : [0, 1] \to [0, 1]\) defined by \(T_{\beta}x = \beta x \mod 1\).
- If the expansion \(a_1a_2\ldots\) of 1 base \(\beta\) is nonterminating, we put \(e_{\beta}(1) = a_1a_2\ldots\).
- Otherwise there is a first \(i\) for which \(T_{\beta}^i1 = n \in \mathbb{N}\), and then we put \(e_{\beta}(1) = [a_1 \ldots a_{i-1}(n - 1)]^\infty\).
A sequence $a = a_1 a_2 \cdots \in D^\mathbb{N}$ is in Σ^+_{β} if and only if $\sigma^k x \leq e_{\beta}(1)$ for all $k \geq 0$.
\textbf{\(\beta\)-shifts and lexicographic order}

- A sequence \(a = a_1a_2 \cdots \in D^\mathbb{N}\) is in \(\Sigma_\beta^+\) if and only if \(\sigma^k x \leq e_\beta(1)\) for all \(k \geq 0\).

- A sequence \(a = a_1a_2 \cdots \in D^\mathbb{N}\) is \(e_\beta(1)\) for some \(\beta\) if and only if it dominates all its shifts: \(a \geq \sigma^k a\) for all \(k \geq 0\) (Parry, 1960).
A doubly lexicographic map of the interval

Consider now a Sturmian symbolic dynamical system with rotation number θ. It also has a lexicographically *maximal* element.
A doubly lexicographic map of the interval

Consider now a Sturmian symbolic dynamical system with rotation number θ. It also has a lexicographically maximal element.

Since $M(\theta)$ is lexicographically maximal in a subshift, it dominates all its shifts and hence is the expansion $e_\beta(1)$ of 1 base β for some $\beta = \beta(\theta) \in (1, 2)$.
A doubly lexicographic map of the interval

Consider now a Sturmian symbolic dynamical system with rotation number θ. It also has a lexicographically maximal element.

Since $M(\theta)$ is lexicographically maximal in a subshift, it dominates all its shifts and hence is the expansion $e_\beta(1)$ of 1 base β for some $\beta = \beta(\theta) \in (1, 2)$.

We define $L : (0, 1] \rightarrow (0, 1]$ by $L(\theta) = \beta(\theta) - 1$.
The map L

The map $L : (0, 1] \rightarrow (0, 1]$ is strictly increasing.
The map L

- The map $L : (0, 1] \rightarrow (0, 1]$ is strictly increasing.
- This is because $\beta \rightarrow e_\beta(1)$ is strictly increasing and each row of the Farey diagram of blocks is strictly increasing.
The map L

- The map $L : (0, 1] \rightarrow (0, 1]$ is strictly increasing.

- This is because $\beta \rightarrow e_\beta(1)$ is strictly increasing and each row of the Farey diagram of blocks is strictly increasing.

- For $\theta = 1/3$, the minimal element is $001001001\ldots$, the maximal element is $M(\theta) = 100100100\ldots = (1_{[0,1/3]}(n \times 2/3))$, and $\beta(\theta)$ is the reciprocal of the solution of $1 = x + x^4 + x^7 + \ldots$, i.e. $1 = x + x^3$.

Queen Mary, U. of London, June 22, 2009 – p.36/37
The map L

- The map $L : (0, 1] \rightarrow (0, 1]$ is strictly increasing.
- This is because $\beta \rightarrow e_\beta(1)$ is strictly increasing and each row of the Farey diagram of blocks is strictly increasing.
- For $\theta = 1/3$, the minimal element is $001001001\ldots$, the maximal element is $M(\theta) = 100100100\ldots = (1_{[0,1/3]}(n \times 2/3))$, and $\beta(\theta)$ is the reciprocal of the solution of $1 = x + x^4 + x^7 + \ldots$, i.e. $1 = x + x^3$.
- For $\theta = 2/3$, the minimal element is $011011011\ldots$, the maximal element is $M(\theta) = 110110110\ldots = (1_{[0,2/3]}(n \times 1/3))$, and $\beta(\theta)$ is the reciprocal of the solution of $1 = (x + x^2)(1 + x^3 + \ldots)$, i.e. $1 = x + x^2 + x^3$.
Some values of L

- $L(1/2)$ is the solution α of $x + x^2 = 1$.

Some values of L

- $L(1/2)$ is the solution α of $x + x^2 = 1$.
- $L(\mathbb{Q}) \subset$ algebraic numbers.
Some values of L

- $L(1/2)$ is the solution α of $x + x^2 = 1$.
- $L(\mathbb{Q}) \subset$ algebraic numbers.
- $M(\alpha) = 1f$, where f is the fixed point of the Fibonacci substitution $0 \rightarrow 01, 1 \rightarrow 0$.
Some values of L

- $L(1/2)$ is the solution α of $x + x^2 = 1$.
- $L(\mathbb{Q}) \subseteq$ algebraic numbers.
- $M(\alpha) = 1f$, where f is the fixed point of the Fibonacci substitution $0 \rightarrow 01, 1 \rightarrow 0$.
- The 1999 thesis of Kimberly Johnson gives (among other things) an algorithm for finding the maximal elements in substitution subshifts.
Some values of L

- $L(1/2)$ is the solution α of $x + x^2 = 1$.
- $L(\mathbb{Q}) \subset$ algebraic numbers.
- $M(\alpha) = 1f$, where f is the fixed point of the Fibonacci substitution $0 \to 01, 1 \to 0$.
- The 1999 thesis of Kimberly Johnson gives (among other things) an algorithm for finding the maximal elements in substitution subshifts.
- $L(\alpha)$ is transcendental (Chi and Kwon, 2004).
Some values of L

- $L(1/2)$ is the solution α of $x + x^2 = 1$.
- $L(\mathbb{Q}) \subset$ algebraic numbers.
- $M(\alpha) = 1f$, where f is the fixed point of the Fibonacci substitution $0 \to 01, 1 \to 0$.
- The 1999 thesis of Kimberly Johnson gives (among other things) an algorithm for finding the maximal elements in substitution subshifts.
- $L(\alpha)$ is transcendental (Chi and Kwon, 2004).
- Since the mapping L connects the lexicographic order properties of Sturmian systems and β-shifts (and the interval), it may be interesting to develop further its properties and those of the dynamical system it defines.
Some values of L

- $L(1/2)$ is the solution α of $x + x^2 = 1$.
- $L(\mathbb{Q}) \subset$ algebraic numbers.
- $M(\alpha) = 1f$, where f is the fixed point of the Fibonacci substitution $0 \rightarrow 01, 1 \rightarrow 0$.
- The 1999 thesis of Kimberly Johnson gives (among other things) an algorithm for finding the maximal elements in substitution subshifts.
- $L(\alpha)$ is transcendental (Chi and Kwon, 2004).
- Since the mapping L connects the lexicographic order properties of Sturmian systems and β-shifts (and the interval), it may be interesting to develop further its properties and those of the dynamical system it defines.
- I recently found out that in recent papers and preprints, DoYong Kwon has defined and studied essentially the same function.