Risk-Benefit Preferences Versus Measured Utility: A Comparison of Methods

F. Reed Johnson
George Van Houtven
Research Triangle Institute

10/14/06
Risk-Benefit Preferences Versus Measured Utility:
A Comparison of Methods

Health-related decisions often require patients to trade off the health benefits of an intervention, such as a medical treatment or procedure, against the countervailing risk of a serious adverse health outcome. Fundamental to these decisions are whether and at what point the risks outweigh the benefits. In other words, what are the maximum risks patients are willing to tolerate in exchange for the benefits of the intervention?

Health economists and cognitive psychologists have long studied individuals’ preferences regarding these types of benefit-risk tradeoffs. In particular, standard gamble (SG) methods are now widely applied to measure health-related utilities for specific conditions. These utility measures, which primarily are used to support cost-effectiveness analyses, are derived from surveys where respondents are asked to choose between (1) the certainty of a specific state of ill health for the remainder of life and (2) a probabilistic lottery involving two potential outcomes: perfect health for the same period or immediate painless death. Although other methods also are commonly used, many argue that the SG method is the gold standard for measuring health utilities (Gold et al., 1996). It offers the advantage of representing decisions under conditions of uncertainty, which is typical of health related decisions, and it is based on an established theoretical framework for decision making under uncertainty (Von Neuman and Morgenstern, 1944).

A number of recent and well-publicized events involving withdrawals of drugs from the U.S. market (Wysowski and Swartz, 2005) has underscored the importance of understanding and measuring individuals’ preferences regarding risk-benefit trade-offs. In all of these cases, interventions offering potentially significant therapeutic benefits were found to carry increased risks of serious and often life-threatening adverse events. Decisions to halt the development or sale of these therapies clearly require balancing of benefits and risks; however, establishing criteria for when the risks outweigh the benefits presents important challenges to decision makers.

Discrete-choice experiments or conjoint analysis (CA) recently has been proposed and demonstrated as a multiattribute method for systematically measuring patients’ preferences for these types of risk-benefit tradeoffs (Johnson et al., 2006). Like the SG method, these applications of CA use surveys to present individuals with therapeutic choices involving defined health outcomes and risks. The experimental design of these questions provides a framework,
not only for measuring the relative utility individuals associate with different outcomes, but also for measuring individuals' maximum acceptable risk (MAR) – i.e., the maximum probability of an adverse outcome they are willing to tolerate in exchange for a defined therapeutic benefit. These MAR estimates provide valuable insights into patient preferences, and they should therefore help to inform risk management decisions that require balancing the risks and benefits of specific therapies. For example, if average MAR in a patient population is significantly higher than the actual risks of an adverse outcome, this suggests that the benefits of the treatment outweigh its risks.

The purpose of this paper is to compare and contrast SG and CA methods for measuring individuals' preferences regarding risk-benefit tradeoffs. We compare the empirical methods used, conceptual frameworks and assumptions used, and types of health preference measures produced. Using a recent study of patient preferences for Crohn's disease treatments, we compare empirical preference measures to commonly assumed theoretical restrictions on admissible functional forms, identify likely biases in conventional SG utility measures, and suggest an approach for incorporating risk preferences in a recently proposed extension of cost-effectiveness methods to risk-benefit analysis [Lynd and O'Brien, 2004].

SG and CA methods share a number of similarities when applied to health-related decision making. First, both are applications of stated-preference methods. That is, they use surveys to elicit respondent preferences using stated choices for hypothetical health-outcomes or treatments. Second, the two methods can be used to elicit preferences among hypothetical choices involving both certain and uncertain health outcomes. Third, both methods can be used to estimate measures of health utility. Finally, in principle, both CA and SG methods can be used to measure the maximum acceptable risk (MAR) of a serious adverse health outcome individuals are willing to tolerate in exchange for a specific health improvement. (Thompson, 1986)

Standard Gamble under Expected and Non-Expected Utility

SG methods are most commonly used to support cost-effectiveness or cost-utility analyses, where changes in health-related utility are measured in terms of quality adjusted life years (QALYs). They specifically are used to estimate health-state utility index values for particular health conditions. These utility indexes typically are expressed on a 0 to 1 scale, where 0 represents the worst possible outcome, usually death, and 1 represents the best
possible outcome, usually perfect health, and thus lower values represent more severe health states (lower utility). QALYs are calculated by multiplying these health-index constants by the number (or fraction) of years spent in the corresponding health state.

The conceptual foundation for using SG methods to measure health-related utility is based on the axioms of expected utility theory (EUT), as initially described by Von Neuman and Morgenstern (1944). These axioms postulate that individuals implicitly assign utilities to different outcomes and that, when making decisions under uncertainty, they weight the utilities of different outcomes according to their respective probabilities of occurring. Individuals maximize utility under uncertainty by selecting prospects that maximize probability-weighted or expected utility.

In the typical SG elicitation, survey respondents evaluate two prospects. The first prospect involves the certainty (probability = 1) of living for a defined period in a specific state of ill health (H_0). The second prospect involves uncertainty, with a lottery between two extreme outcomes:

- immediate painless death (D) with probability p (0<p<1) and
- perfect health (H_1) for the same time period with probability 1-p.

Under EUT, the expected utility (EU) of the uncertain prospect is assumed to be:

$$EU(p,D,H_1) = p \cdot U(D) + (1 - p) \cdot U(H_1)$$

where $U(D)$ and $U(H_1)$ are the utilities of death and perfect health respectively.

The objective of the SG question is to identify the value of p that makes individuals indifferent between the two prospects. We refer to this value as p^*. Although a number of alternative approaches can be used, in most cases SG methods apply an iterative approach ("ping-pong" or "bidding-game" method) to arrive at p^* (Hammerschmidt, 2004). Rather than asking respondents to directly state a value for p^*, these iterative methods use a series of discrete choice questions. Respondents are presented with specific values of p and asked to select their preferred prospect. Depending on how they respond, the value of p is adjusted and the question is repeated until the individual reaches the point of indifference.

According to EUT, individuals should reach indifference at a value of p^* where the expected utility of the two prospects are equal; therefore, when the utility of death is normalized to zero and the utility of perfect health is normalized to 1, it follows that
\[U(H_0) = 1 - p^* \] \hspace{1cm} (2)

Therefore, 1-\(p^*\) can be interpreted as a utility index value of the ill-health state \(H_0\) as a fraction of perfect health. In addition, \(p^*\) can be interpreted as

1. the MAR of immediate painless death in exchange for improving health from \(H_0\) to \(H^1\), and

2. the instantaneous utility gain or benefit of an improvement from ill health to perfect health.

Although the EUT framework is widely used to characterize decision making under uncertainty for health and other areas of applied economics, it also has been widely criticized for both its positive and normative implications. A large number of empirical studies have demonstrated systematic violations of the types of behaviors predicted by EUT. (See Starmer, 2000, for a review of this literature.) These findings cast doubt on EUT as a reliable framework for representing individual preferences and for measuring changes in individual welfare.

One of the main explanations for the observed deviations from EUT is that individuals may not employ linear probability weighting as required by the theory. Rather, individuals may systematically adjust probabilities such that, in certain ranges, they receive more weight than their value and in others they receive less. The result is that probability changes have nonlinear effects on individuals' preferences. Two of the main alternatives to EUT that directly address this type of probability weighting, are rank-dependent utility (RDU) (Quiggin 1993, Yaari 1987) and prospect theory (Kahneman and Tversky, 1979). Both models depart from EUT by incorporating nonlinear probability weighting functions in the preference specification \(^1\).

Applying the RDU model to the uncertain prospect in an SG framework, preferences can be expressed as:

\[\text{RDU}(p,D,H^1) = w(p) \cdot U(D) + w(1-p) \cdot U(H^1) \] \hspace{1cm} (3)

where \(w(\cdot)\) is the probability weighting function. This function is a strictly increasing function with respect to \(p\), such that \(w(0)=0\), \(w(1)=1\), and, for values of \(p\) between 0 and 1, \(w(p)\) may be greater than, less than, or equal to \(p\). Importantly, if \(w(p) = p\) for all \(p\), then the RDU model is identical to the EUT model.

\(^1\) Prospect theory also includes features that account for the role of reference points in evaluating gains and losses and other commonly observed cognitive anomalies.
Empirical evidence on the shape of the probability weighting function comes primarily from studies examining monetary choices and tradeoffs (Tversky and Kahneman 1992; Wu and Gonzalez, 1996, Abdellaoui et al., 2006) and only more recently from health-related choices (Bleichrodt and Pinto 2000). These studies use choice experiments to measure how respondents’ choices vary with respect to specified changes in probabilities. They typically assume a functional form for the probability weighting function and use respondent choices to estimate values for the parameters of these functions. Results from these studies generally indicate a weighting function with an inverted S-shape, such that \(w(p) > p \) for smaller values of \(p \) and \(w(p) < p \) for larger values. Examples of weighting functions with this form are shown in Figure 2.

One of the implications of the probability weighting function under RDU and its observed S-shape is that the SG method no longer can be interpreted as providing a utility index for a specific state of ill health (\(H_0 \)). Rather than Eq (2), RDU implies that:

\[
U(H_0) = w(1 - p^{**})
\]

where \(p^{**} \) is the MAR of immediate painless death (in exchange for an improvement to perfect health) when preferences are consistent with RDU. Depending on the severity of the health condition, the SG estimate will either overstate or understate utility. In particular, for relatively severe conditions, the SG estimate, \(1-p^{**} \), is likely to understate utility, \(w(1-p^{**}) \), while for relatively mild conditions SG is likely to overstate utility.

Because the conventional SG preference-elicitation format requires that preferences be linear in probability, it does not yield data to test or estimate properties or parameters of the probability weighting function. Consequently, it does not allow one to estimate the size of the potential bias in EUT measures of health utility. The CA method, in contrast, can be used to explore these properties.

Conjoint Analysis

Rather than imposing a priori restrictions on the functional form preferences may take, CA methods are based instead on multiattribute, hedonic utility theory. According to hedonic principles, all “commodities” over which consumers make choices (including therapeutic treatment options) can be thought of as being composed of a set of attributes. The attractiveness of a commodity to an individual is a function of these attributes. CA recognizes
that individuals place different levels of importance on a commodity’s attributes and, thus, are willing to accept tradeoffs among them.

When applied to evaluating health preferences, the CA multiattribute choice alternatives often are framed as “health profiles” associated with possible treatment options. Each alternative j is described according to a vector of distinct attributes (X_j). This vector might include several different, but not necessarily mutually exclusive, therapeutic benefits, mild-to-moderate side effects, and serious adverse-event (SAE) risks associated with the treatment alternative. X_j may include both continuous and categorical attributes, and the categorical attributes may or may not be naturally ordered.

In a CA survey, respondents are presented with a series of evaluation tasks involving choices between two or more treatment options. Each treatment option is described according to the same attribute categories but the levels of these attributes are varied across options and across choice tasks according to an experimental design with known statistical properties. Applying a random utility modeling (RUM) framework and a discrete-choice estimator such as conditional logit, the observed pattern of respondent choices allows the estimation of preference parameters (McFadden, 1981) for all attribute levels.

The random utility associated with each alternative is assumed to be a function of these attributes plus a random error term:

\[U_j = V_j + \varepsilon_j \]
\[V_j = X_j \beta \] \hspace{1cm} (5)

where

\(V_j \) is the determinate part of the utility function for treatment j;
\(X_j \) is a vector of attribute levels for treatment j;
\(\beta \) is a vector of attribute parameters (preference weights); and
\(\varepsilon_j \) is a random error.

CA allows for estimation of the relative magnitudes of parameters in the \(\beta \) vector. In addition, by specifying levels of continuous variables such as SAE risks as categorical, we can directly test whether preferences are linear in probability or whether they conform to a weighting function that can be parameterized.
CA with linear risk preferences

When the treatment options in a CA survey include attributes that are characterized by uncertain outcomes – i.e., SAE risks – one option is to assume an EU framework. For example, assume that treatment options for a specific disease can all be described according to a vector of attributes X_j. Furthermore, assume that X_j consists of (1) a vector of efficacy attributes, X_{Bj}, such as the frequency of disease flare-ups (brief periods of intensified symptoms) and the severity of day-to-day disease symptoms and (2) a single fatal SAE risk, p_j. In this case the expected utility of a treatment option j, can be expressed as:

$$V_j = (1-p_j)X_{Bj} \beta_B + \beta_R p_j$$ \hspace{1cm} (6)

where

- β_B is the vector of attribute parameters in β associated with X_{Bj}; and
- β_R is the attribute parameter in β associated with p_j.

Eq (6) implies that the utility of a treatment option is linear with respect to its SAE risk.

The estimated parameter vector can be used to estimate MAR for selected treatment benefits. If treatment j provides a higher level of efficacy than treatment i, such that $(\Delta X)\beta_B > 0$, the MAR associated with this higher efficacy benefit is the increased SAE risk from treatment j, Δp^*, that would make an individual indifferent between treatment i and treatment j. In other words, it is the increased probability of the SAE with treatment j that would exactly offset its benefits, such that $\Delta V=0$. We thus find MAR as the increase in risk Δp^* that equates the difference in expected utility between two treatments, i and j:

$$\Delta V = V_j - V_i = (1-p_i)\beta_B \Delta X - (X_{Bj} \beta_B \Delta p) + (\beta_R \Delta p)$$ \hspace{1cm} (7)

where $\Delta X = X_{Bj} - X_{Bj}$; and $\Delta p = p_j - p_i$.

$$\Delta V = V_j - V_i = (1-p_i) \beta_B \Delta X - X_{Bj} \beta_B \Delta p^* + \beta_R \Delta p^* = 0$$ \hspace{1cm} (8)

Solving this equation for Δp^* gives us the MAR associated with switching from treatment i to treatment j.

Since CA allows us to estimate the relative magnitudes of the parameters in the β vector, including the β_B and β_R parameters, MAR can be directly calculated from the RUM model results using equation (5).

This derivation of MAR, like an EUT framework, assumes that individuals evaluate probabilities linearly. That is, as implied by Eq. (6), the marginal effect of adverse side-effect risks on utility is assumed to be constant so that $\partial V / \partial p = \beta_R$. Using the CA framework, it is possible to empirically test this assumption by defining p as a categorical variable and testing whether there are statistically significant differences in estimated $\frac{\beta_{Rk} - \beta_{Rk+1}}{p_k - p_{k-1}}$ for all SAE probability levels k.

This derivation of MAR is also represented in Figure 1. The vertically sloped line represents the combinations of (1) improvements in efficacy-related benefits, represented by positive values of $(\Delta X)\beta_B$ and (2) increases in side-effect risks, represented by positive values of Δp, that would have exactly offsetting effect on expected utility (i.e., $\Delta V=0$). In this graph, MAR$_{12}$ is shown as the Δp that exactly offsets the efficacy-related benefits of switching from treatment 1 to treatment 2 ($\Delta X_{12}\beta_B$). If the benefits of switching from treatment 1 to a third treatment option (treatment 3) are higher than for treatment 2, then the MAR should also increase. Figure 1 shows this effect, with the benefits of switching to treatment 3 labeled as $\Delta X_{13}\beta_B$ and the higher corresponding MAR labeled as MAR$_{13}$.

CA with a probability weighting function

When the treatment options are characterized by uncertain outcomes, CA can also be adapted to use an RDU framework. To account for potential nonlinearities with respect to risk, Eq. (10) adapts the preference framework described in Eq (60 by including the probability weighting function $w(p)$:

$$\bar{V}_i = w(1-p_i)X_{Bi}\beta_B + w(p_i)\beta_R$$ (10)
The change in expected utility between treatment i and j can therefore be rewritten as:

\[
\Delta \tilde{V} = w(1-p_i) \beta_B \Delta X - (X_{Bj} \beta_B + \beta_R) [w(p_j) - w(p_i)]
\]

(11)

Setting this equation equal to zero, it is again possible to solve for the MAR that corresponds to a given increase in efficacy, \(\Delta X\). The nonlinearity of this expression with respect to the risk terms means that MAR will depend on the point of reference for risk. Using the SAE risk from treatment i as the this point of reference, we assume for simplicity that \(p_i = 0\), and we solve for \(p_{j}^{**} = \text{MAR} \).

\[
\text{MAR}_{ij} = p_{j}^{**} = w^{-1} \left[-\frac{\beta_B}{\beta_R - X_{Bj} \beta_B} \Delta X \right]
\]

(12)

Existing Empirical Evidence on Probability Weights

Tversky and Kahneman (1992) proposed a single-parameter \(\gamma\) probability weighting function consistent with observations that individuals tend to overweight small probabilities and underweight large probabilities.

\[
w(p) = \frac{p^\gamma}{\left[p^\gamma + (1-p)^\gamma\right]^{1/\gamma}} \quad \text{for} \quad 0.27 \leq \gamma \leq 1 \]

(13)

Based on a financial decision making experiment, they estimated the value of \(\gamma\) to be 0.61 for gains and 0.69 for losses. For health-related decisions, Bleichrodt and Pinto (2000) estimate values of \(\gamma\) ranging from 0.68 to 0.71. Figure 2 illustrates the effect of various values of \(\gamma\) on the weighting function.

Other authors have proposed alternative one-parameter and two-parameter weighting functions with inverse-S shapes similar to Eq (13) (Tversky and Wakker, 1995; Wu and
As previously discussed, the direct implication of inverse-S weighting functions is that responses to SG questions will yield mortality risk probabilities that, depending on the severity of the health condition, will either overstate or understate utility as calculated under expected-utility assumptions. Figure 3 illustrates the difference between SG responses if utility is linear in probability or nonlinear with $\gamma = 0.6$. For relatively severe conditions and nonlinear probability weighting, the SG estimate, $1-p^*$, is likely to understate utility, while for relatively less severe conditions SG is likely to overstate utility.

Empirical Estimates of MAR and Probability Weights Using CA: An Application to Crohn’s Disease

In a recent choice-format CA survey, we surveyed 570 Crohn’s disease patients using a web-enabled survey instrument. Crohn’s disease is a chronic, relapsing inflammatory disease of the gastrointestinal tract, characterized by symptoms of abdominal pain, diarrhea, and rectal bleeding. Serious complications of Crohn’s disease include fistulas, abscesses, bowel obstruction, and anal fissures that may require repeated surgeries and resections. The symptoms, complications, and comorbidities of Crohn’s disease often result in poor health related quality of life for these patients and they limit their ability or willingness to participate in normal physical and social activities.

The CA survey presented patients with choice tasks involving paired comparisons of treatment options. The efficacy of these options were characterized using the following attributes:

- symptoms and activity limitations
- serious complications
- time between flare-ups
- need to take oral steroids

The treatment options were also described according to three possible SAEs:

- progressive multifocal leukoencephalopathy (PML),
- serious infection, such as tuberculosis, and
- lymphoma.
Each of these SAE attributes was described in terms of its possible 10 year mortality risks.

Using a random-parameters logit model (Train, 1998) to analyze the respondent choice data, we first specified the SAE risk levels as categorical variables. This specification imposes no a priori functional-form requirements regarding the effects of risk on individual utility. Parameter estimates for this model are shown in Table 1. We then calculated MAR estimates using these estimates.

Table 1 also shows estimates obtained using the standard linear specification and the weighting function shown in equation (13). Gamma estimates were 0.552, 0.390, and 0.679 for PML, infection, and lymphoma risks, respectively. All γ estimates were significantly different from 1 ($p<0.01$), thus rejecting a linear specification. The lymphoma estimate is similar to those obtained by Tversky and Kahneman and by Bleichrodt and Pinto. Figures 4a-4c compare plots of the original categorical estimates with confidence intervals, the probability weighting function, and the linear estimates. Weighted-probability predicted values correspond closely to the categorical estimates, while the predicted linear values fit the data very poorly.

SG Estimates of MAR and Health Utilities for Crohn’s Disease: Evidence from the Literature

Three SG studies have obtained health utility estimates for Crohn’s disease. Kennedy et al. (2000) surveyed 91 CD patients, 42 percent of whom were in remission. To evaluate the quality of life changes due to post-operative recurrence of CD symptoms, they estimated SG scores for a recurrence of CD over 3 years. The resulting average SG utility was 0.91 (SD=0.11); however, the exact timing and severity of the recurrence is not explicit in the study. Arseneau et al. (2001) also used SG methods with a small sample of both CD patients (N=32) and healthy individuals (N=20). They estimated utility scores for various symptoms (e.g, fistula, improved fistula); however, these estimates are difficult to interpret due to a lack of detail regarding their empirical methods.

The study that is the most detailed and comparable to our CA study is Gregor et al. (1997). The authors surveyed 180 adult CD patients with varying levels of disease severity and estimated SG utility scores for three hypothetical health states: mild, moderate, and severe CD. The average scores for these three conditions were 0.81-0.82, 0.72-0.73, and 0.50-0.54 respectively. These utility estimates correspond to MAR values of about 0.20 and 0.10 for improvements from severe to moderate and from moderate to mild, respectively. In this context,
the MAR represents the maximum additional probability of immediate death that patients are willing to tolerate to acquire an improvement in their Crohn’s related health state.

Comparing CA and SG Estimates for Crohn’s Disease

A direct comparison of our CA estimates with existing SG estimates of MAR is problematic because the risk outcomes evaluated in the two contexts are different. Whereas the SG values are elicited for gambles involving instantaneous, painless death, our CA estimates involve longer-term risks of particular fatal illnesses. The expected effect of these differences on MAR estimates is uncertain. On the one hand, a 10-year risk-exposure period should increase patients’ willingness to accept a given risk level relative to an instantaneous exposure. On the other hand, the CA risks involved painful conditions that could last weeks or months before ending in death. Such conditions should decrease patients’ willingness to accept a given risk level relative to instantaneous, painless death.

Despite these differences, our probability weighting estimates suggest CD patients’ risk preferences are comparable to nonlinear risk preferences elicited in previous studies. Evidence of nonlinear probability weighting from the CA results also implies that the SG estimates of utility will be biased. The CA risk-preference estimates are inconsistent with the EUT assumptions that are required to interpret the SG MAR estimates as utility measures. Using the Gregor et al. MAR estimate for an improvement from moderate to mild CD symptoms, Figure 5 plots the effect of the weighting parameter γ on the utility difference. When $\gamma = 1$, the EUT model holds and the difference in MAR between moderate and mild symptoms (0.10) is equal to the utility difference. However, for $0.4 < \gamma < 1$, the utility levels for the two conditions are lower than the 0.7 and 0.8 values, respectively, that SG estimates would suggest. As Figure 5 also shows, the effect of γ is different for the two conditions; therefore, as γ declines from a value of 1, the actual utility difference decreases relative to the difference in SG MARs. Adjustments for the three disease-specific γ estimates from the CA study correspond to utility differences ranging from 0.017 for $\gamma = 0.39$ to 0.069 for $\gamma = 0.68$, much smaller than the 0.10 value obtained under EU assumptions.
Discussion

Systematic deviations from EU assumptions have been extensively observed. It might be argued that such deviations simply are cognitive errors—people wrongly perceive small risks to be larger than they actually are and wrongly perceive large risks to be smaller than they actually are. However, probability weighting appears to be quite pervasive and non-expected utility models generally explain behavior better than expected utility models. If such behavior were a cognitive artifact, people would constantly make erroneous decisions without ever learning that they could improve their welfare by maximizing unweighted expected utility. Rejecting such revealed preferences requires rejecting the individualistic ethic that is the basis of modern economic theory, i.e. that individuals are the best judge of their own utility.

While our interest in this study primarily is in how to elicit valid measures of therapeutic risk tolerance, our ability to estimate nonlinear risk preferences with CA data offers a direct test of the expected utility hypothesis for hypothetical, but realistic therapeutic tradeoffs. The SG method requires analysts to assume the expected utility hypothesis is valid and produces no empirical test of this essential assumption. Hence our rejection of linear risk preferences has implications for deriving conventional health utility weights via the SG “gold standard,” as well as for interpretation of the reciprocal of utility weights as a measure of risk tolerance.

Although our MAR estimates for CD treatments are smaller than those implied by SG methods, CD patients appear to be willing to accept significant SAE risks in return for therapeutic benefits. This risk tolerance is greater than observed clinical risks. However, our analysis raises questions about how to define risk exposures. If patients weight risks subjectively in determining MAR, then their subjective perception of actual risk exposure should also be weighted accordingly to compare the implicit utility of the maximum tolerance versus the implicit utility of the actual risk exposure. Thus the weighted incidence of a rare even may be significantly larger than the measured incidence.
REFERENCES

Thompson M. Willingness to Pay and Accept Risks to Cure Chronic Disease *American Journal of Public Health* 1986; 76(4):392-396

Figure 1. Maximum acceptable risk when side-effect risks have a constant linear effect on expected utility.
Figure 2. One-Parameter Probability Weighting Function

Figure 3. SG Responses for Specific Health Conditions (H) Under Linear (p*) and Nonlinear (p**) Expected Utility (γ = 0.6)
Figure 4a. Comparison of Categorical, Weighted Probability ($\gamma=0.55$), and Linear Specifications of PML Risk Preferences

Figure 4b. Comparison of Categorical, Weighted Probability ($\gamma=0.39$), and Linear Specifications of Infection Risk Preferences
Figure 4c. Comparison of Categorical, Weighted Probability ($\gamma=0.68$), and Linear Specifications of Lymphoma Risk Preferences

Figure 5. Effect of Gamma Parameter on MAR Bias from Standard-Gamble Utilities

<table>
<thead>
<tr>
<th>Gamma</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.90</td>
</tr>
<tr>
<td>0.4</td>
<td>0.85</td>
</tr>
<tr>
<td>0.5</td>
<td>0.80</td>
</tr>
<tr>
<td>0.6</td>
<td>0.75</td>
</tr>
<tr>
<td>0.7</td>
<td>0.70</td>
</tr>
<tr>
<td>0.8</td>
<td>0.65</td>
</tr>
<tr>
<td>0.9</td>
<td>0.60</td>
</tr>
<tr>
<td>1.0</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Table 1. Conditional Logit Preference Parameter Estimates, Categorical and Probability-Weighted Models*

<table>
<thead>
<tr>
<th>Attribute Levels</th>
<th>Categorical Risk Model</th>
<th>Continuous Risk Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>Asymp t-ratio</td>
</tr>
<tr>
<td>Remission</td>
<td>1.0243</td>
<td>15.7</td>
</tr>
<tr>
<td>Mild</td>
<td>0.5033</td>
<td>10.3</td>
</tr>
<tr>
<td>Moderate</td>
<td>-0.4518</td>
<td>-9.0</td>
</tr>
<tr>
<td>Severe</td>
<td>-1.0758</td>
<td></td>
</tr>
<tr>
<td>Prevent complications</td>
<td>0.2048</td>
<td>3.4</td>
</tr>
<tr>
<td>Reduce complications</td>
<td>-0.1531</td>
<td>-2.6</td>
</tr>
<tr>
<td>No effect on complications</td>
<td>-0.0517</td>
<td></td>
</tr>
<tr>
<td>2 years between flare-ups</td>
<td>0.084</td>
<td>2.6</td>
</tr>
<tr>
<td>6 months between flare-ups</td>
<td>-0.084</td>
<td></td>
</tr>
<tr>
<td>No steroids</td>
<td>0.3567</td>
<td>9.3</td>
</tr>
<tr>
<td>Steroids</td>
<td>-0.3567</td>
<td></td>
</tr>
<tr>
<td>Infection risk = 0</td>
<td>0.3651</td>
<td>5.3</td>
</tr>
<tr>
<td>Infection risk = 0.005</td>
<td>0.0542</td>
<td>1.1</td>
</tr>
<tr>
<td>Infection risk = 0.02</td>
<td>-0.2086</td>
<td>-3.6</td>
</tr>
<tr>
<td>Infection risk = 0.05</td>
<td>-0.2107</td>
<td></td>
</tr>
<tr>
<td>Infection risk</td>
<td>-3.9539</td>
<td>-6.0</td>
</tr>
<tr>
<td>Infection gamma</td>
<td>0.3895</td>
<td>7.5</td>
</tr>
<tr>
<td>PML risk = 0</td>
<td>0.5333</td>
<td>8.3</td>
</tr>
<tr>
<td>PML risk = 0.005</td>
<td>0.2227</td>
<td>4.1</td>
</tr>
<tr>
<td>PML risk = 0.02</td>
<td>-0.2356</td>
<td>-4.0</td>
</tr>
<tr>
<td>PML risk = 0.05</td>
<td>-0.5204</td>
<td></td>
</tr>
<tr>
<td>PML risk</td>
<td>-7.4277</td>
<td>-9.4</td>
</tr>
<tr>
<td>PML gamma</td>
<td>0.5515</td>
<td>10.2</td>
</tr>
<tr>
<td>Lymphoma risk = 0</td>
<td>0.3160</td>
<td>5.0</td>
</tr>
<tr>
<td>Lymphoma risk = 0.005</td>
<td>0.1529</td>
<td>2.8</td>
</tr>
<tr>
<td>Lymphoma risk = 0.02</td>
<td>-0.0871</td>
<td>-1.4</td>
</tr>
<tr>
<td>Lymphoma risk = 0.05</td>
<td>-0.3818</td>
<td></td>
</tr>
<tr>
<td>Lymphoma risk</td>
<td>-6.1498</td>
<td>-3.5</td>
</tr>
<tr>
<td>Lymphoma gamma</td>
<td>0.6785</td>
<td>5.0</td>
</tr>
</tbody>
</table>

** Attribute levels are effects coded, not dummy-variable coded. Omitted categories are coded -1, so the omitted category for each attribute is the negative sum of the included categories.