BKK the EZ way

Ric Colacito, Max Croce, Steven Ho, Philip Howard
BKK the EZ way
Backus, Kehoe, and Kydland the Epstein and Zin way

Ric Colacito, Max Croce, Steven Ho, Philip Howard
Motivation

- Our goal: characterizing role of long-term risks in international macroeconomics
 - Current events: public concern about long-term world-wide growth prospects
Our goal: characterizing role of long-term risks in international macroeconomics

- Current events: public concern about long-term world-wide growth prospects

- Should capital always flow toward the most productive countries?
Motivation

- Our goal: characterizing role of long-term risks in international macroeconomics
 - Current events: public concern about long-term world-wide growth prospects
 - Should capital always flow toward the most productive countries? No
Motivation

- Our goal: characterizing role of long-term risks in international macroeconomics
 - Current events: public concern about long-term world-wide growth prospects
- Should capital always flow toward the most productive countries? No
- Novel BKK-based model with (1) recursive risk-sharing and (2) low investment home-bias
 - positive short-run productivity shocks \rightarrow inflow of investment goods ($NX_I \downarrow$ and $NX \downarrow$) standard
Motivation

Our goal: characterizing role of long-term risks in international macroeconomics

- Current events: public concern about long-term world-wide growth prospects

Should capital always flow toward the most productive countries? No

Novel BKK-based model with (1) recursive risk-sharing and (2) low investment home-bias

1. Positive short-run productivity shocks → inflow of investment goods ($NX_I \downarrow$ and $NX \downarrow$) standard
2. Positive long-run productivity shocks → outflow of investment goods ($NX_I \uparrow$ and $NX \uparrow$) NEW
Motivation

- Our goal: characterizing role of long-term risks in international macroeconomics
 - Current events: public concern about long-term world-wide growth prospects
- Should capital always flow toward the most productive countries? No
- Novel BKK-based model with (1) recursive risk-sharing and (2) low investment home-bias
 1. positive short-run productivity shocks \rightarrow inflow of investment goods ($NX_I \downarrow$ and $NX \downarrow$) standard
 2. positive long-run productivity shocks \rightarrow outflow of investment goods ($NX_I \uparrow$ and $NX \uparrow$) NEW
- Novel empirical evidence G7 countries support our model
International allocation of resources depends on two channels:

1. **Productivity**: resources are invested in the high-productivity country
2. **Risk-sharing**: resources go to the low-productivity country
Insight

- International allocation of resources depends on two channels:
 1. **Productivity**: resources are invested in the high-productivity country
 2. **Risk-sharing**: resources go to the low-productivity country

- Add Epstein-Zin (EZ) to Backus-Kehoe-Kydland (BKK):
 1. **Short-run shocks** → productivity channel dominates
 2. **Long-run shocks** → risk-sharing channel dominates
Insight

- International allocation of resources depends on two channels:
 1. **Productivity**: resources are invested in the high-productivity country
 2. **Risk-sharing**: resources go to the low-productivity country

- Add Epstein-Zin (EZ) to Backus-Kehoe-Kydland (BKK):
 1. **Short-run shocks** → productivity channel dominates
 2. **Long-run shocks** → risk-sharing channel dominates

- Convincing quantitative results:
 1. **Low investment home-bias** → international quantities ✓
 2. **Vintage capital** → international asset prices ✓
Resolved Puzzles

1. Quantity anomaly
 - Cross country correlations of GDP are higher than cross country correlations of consumption
Resolved Puzzles

1. Quantity anomaly
 - Cross country correlations of GDP are higher than cross country correlations of consumption

2. Equity premium puzzle
 - Excess return on equities over risk-free bonds is high from viewpoint of a large class of traditional models
Resolved Puzzles

1. Quantity anomaly
 - Cross country correlations of GDP are higher than cross country correlations of consumption

2. Equity premium puzzle
 - Excess return on equities over risk-free bonds is high from viewpoint of a large class of traditional models

3. Brandt Cochrane Santa-Clara puzzle
 - Disconnect between the volatility of exchange rate and co-movement of SDFs
Resolved Puzzles

1 Quantity anomaly
 - Cross country correlations of GDP are higher than cross country correlations of consumption

2 Equity premium puzzle
 - Excess return on equities over risk-free bonds is high from viewpoint of a large class of traditional models

3 Brandt Cochrane Santa-Clara puzzle
 - Disconnect between the volatility of exchange rate and co-movement of SDFs

4 Backus-Smith puzzle
 - Low correlation between consumption and exchange rate
Resolved Puzzles

1 Quantity anomaly
 - Cross country correlations of GDP are higher than cross country correlations of consumption

2 Equity premium puzzle
 - Excess return on equities over risk-free bonds is high from viewpoint of a large class of traditional models

3 Brandt Cochrane Santa-Clara puzzle
 - Disconnect between the volatility of exchange rate and co-movement of SDFs

4 Backus-Smith puzzle
 - Low correlation between consumption and exchange rate

5 Forward premium anomaly
 - High interest rate currencies continue to appreciate despite uncovered interest rate parity predictions
 - Our model will produce endogenous time-varying currency risk premia, however the overall amount is not sufficient to fully reconcile the anomaly
Agenda

- Economic Model
- Theoretical Predictions
- Empirical Results
- Summary
Preferences

\[C_t = \left(\lambda X_t^{1-\frac{1}{3}} + (1-\lambda) Y_t^{1-\frac{1}{3}} \right) \frac{1}{1-\frac{1}{3}} \]
Preferences

\[C_t = \left[\lambda X_t^{1-\frac{1}{3}} + (1 - \lambda) Y_t^{1-\frac{1}{3}} \right]^{\frac{1}{1-\frac{1}{3}}} \]

\[\tilde{C}_t = C_t - \varphi N_t^{1+\frac{1}{7}} A_{t-1} \quad \text{(Raffo)} \]
Preferences

\[C_t = \left[\lambda X_t^{1-\frac{1}{\psi}} + (1-\lambda) Y_t^{1-\frac{1}{\psi}} \right]^{\frac{1}{1-\frac{1}{\psi}}} \]

\[\tilde{C}_t = C_t - \varphi N_t^{1+\frac{1}{\psi}} A_{t-1} \] (Raffo)

\[U_t = \frac{1 - \beta}{1 - \frac{1}{\psi}} \tilde{C}_t^{1-\frac{1}{\psi}} + \beta E_t \left[U_t^{1-\frac{1}{\psi}} \right]^{1-\frac{1}{\psi}} \] (EZ)
EZ Risk-Sharing Motive

\[U_t \approx (1 - \delta) \frac{\tilde{C}_t^{1 - \frac{1}{\psi}}}{1 - \frac{1}{\psi}} + \delta E_t[U_{t+1}] - \left(\gamma - \frac{1}{\psi} \right) \text{Var}_t[U_{t+1}] \kappa_t \]

CRRA Preferences

Utility Variance
EZ Risk-Sharing Motive

\[U_t \approx (1 - \delta) \frac{\tilde{C}_t^{1 - \frac{1}{\psi}}}{1 - \frac{1}{\psi}} + \delta E_t[U_{t+1}] - (\gamma - \frac{1}{\psi}) \text{Var}_t[U_{t+1}] \kappa_t \]

\[M_{t+1} = \beta \left(\frac{\tilde{C}_{t+1}}{\tilde{C}_t} \right)^{-\frac{1}{\psi}} \left(\frac{U_{t+1}}{E_t \left[U_{t+1}^{1 - \gamma} \right]^{\frac{1}{1 - \gamma}}} \right)^{\frac{1}{\psi} - \gamma} \]
EZ Risk-Sharing Motive

\[
U_t \approx (1 - \delta) \frac{\tilde{C}_t^{1 - \frac{1}{\psi}}}{1 - \frac{1}{\psi}} + \delta E_t[U_{t+1}] - (\gamma - \frac{1}{\psi}) \text{Var}_t[U_{t+1}] \kappa_t
\]

\[
M_{t+1} = \beta \left(\frac{\tilde{C}_{t+1}}{\tilde{C}_t} \right)^{-\frac{1}{\psi}} \left(\frac{U_{t+1}}{E_t \left[U_{t+1}^{1-\gamma} \right]^{\frac{1}{1-\gamma}}} \right)^{\frac{1}{\psi} - \gamma}
\]

CRRA Preferences

Utility Variance

\[S_t\text{ is the relative distribution of wealth}\]

- \[\frac{S_t}{S_{t-1}} = \frac{\Delta C_t}{\Delta C^*} \frac{M_t}{M^*}\]

- Good long-run news ⇒ marginal utility ↓ ⇒ \(S_t\) ↓
Productivity growth

Symmetric specification across countries:

\[
\Delta a_t = \mu + \tau(a_{t-1} - a_{t-1}^*) + \sigma \varepsilon_{a,t} + \varepsilon_{x,t} - 1
\]

\[
z_{x,t} = \rho z_{x,t-1} + \sigma_x \varepsilon_x, t
\]

\[
\varepsilon_{a,t}, \varepsilon_{x,t} \sim iid N(0,1)
\]

Production

\[X_t^{Tot} = K_t^\alpha (A_t N_t)^{1-\alpha} \]

\[= X_t + I_{x,t} + X^*_t + I_{y,t} \]

Domestic Use \hspace{1cm} Foreign Use
Production

\[X_t^{Tot} = K_t^\alpha (A_t N_t)^{1-\alpha} \]

\[= X_t + I_{x,t} + X^*_t + I_{y,t} \]

\[= \underbrace{X_t + Y_t P_t}_{\text{Consumption}} + \underbrace{I_{x,t} + I^*_x P_t}_{\text{Investment}} + \underbrace{X^*_t + I_{y,t}}_{\text{Exports}} - \underbrace{P_t (Y_t + I^*_x,t)}_{\text{Imports}} \]

\(P_t \) is the terms of trade
Capital & Investment

\[K_t = (1 - \delta)K_{t-1} + e^{\omega t} G_{t-1} \]

\[G_t = \begin{bmatrix}
 v^{1 - \frac{1}{\xi}} I_{x,t} \\
 (1 - v)^{1 - \frac{1}{\xi}} I_{x,t} \\
\end{bmatrix}
\]

\begin{align*}
\begin{bmatrix}
 v^{1 - \frac{1}{\xi}} I_{x,t} \\
 (1 - v)^{1 - \frac{1}{\xi}} I_{x,t} \\
\end{bmatrix}
\end{align*}

Domestic Investment

Foreign Investment

\[E_t \begin{bmatrix}
 M_{X,t} + 1 \\
 MPK_t + 1 + (1 - \delta) Q^*_K, t \\
\end{bmatrix}
\]

Terms of trade (EGG)
Capital & Investment

\[K_t = (1 - \delta)K_{t-1} + e^{\omega_t}G_{t-1} \]

\[G_t = \begin{bmatrix} \nu l_{x,t}^{1-\frac{1}{\xi}} + (1 - \nu) l_{x,t}^{*1-\frac{1}{\xi}} \\ \text{Domestic Investment} & \text{Foreign Investment} \end{bmatrix} \]

\[\omega_{t+1} = -\left(\frac{1}{\alpha} - 1\right)(\Delta a_{t+1} - \mu) \]

(EGG)

(ACL)
Capital & Investment

\[K_t = (1 - \delta)K_{t-1} + e^{\omega_t} G_{t-1} \]

\[G_t = \begin{bmatrix} \nu I_{x,t}^{\frac{1}{1-\frac{1}{\xi}}} + (1 - \nu) I_{x,t}^{\frac{1}{1-\frac{1}{\xi}}} \end{bmatrix} \]

Domestic Investment

Foreign Investment

(EGG)

\[\omega_{t+1} = - \left(\frac{1}{\alpha} - 1 \right) (\Delta a_{t+1} - \mu) \]

(ACL)

\[\frac{\partial G_t^{-1}}{\partial I_{x,t}} = E_t \left[M_{t+1}^X (MPK_{t+1} + (1 - \delta) Q_{K,t+1}) e^{\omega_{t+1}} \right] \]

\[\frac{\partial G_t^{*^{-1}}}{\partial I_{y,t}} = E_t \left[M_{t+1}^X (MPK_{t+1}^{*} + (1 - \delta) Q_{K,t+1}^{*}) e^{\omega_{t+1}^{*}} P_{t+1} \right] \]
Capital & Investment

\[K_t = (1 - \delta)K_{t-1} + e^{\omega_t}G_{t-1} \]

\[G_t = \begin{bmatrix} \nu I_{x,t}^{1-\frac{1}{\xi}} + (1-\nu)I_{x,t}^{*1-\frac{1}{\xi}} \end{bmatrix} \begin{bmatrix} \frac{1}{1-\frac{1}{\xi}} \end{bmatrix} \]

(EGG)

\[\omega_{t+1} = -\left(\frac{1}{\alpha} - 1\right)(\Delta a_{t+1} - \mu) \]

(ACL)

\[\frac{\partial G_t^{-1}}{\partial I_{x,t}} = E_t \left[M_{t+1}^X (MPK_{t+1} + (1 - \delta)Q_{K,t+1}) e^{\omega_{t+1}} \right] \]

\[\frac{\partial G_t^{*^{-1}}}{\partial I_{y,t}} = E_t \left[M_{t+1}^X (MPK_{t+1}^* + (1 - \delta)Q_{K,t+1}^*) e^{\omega_{t+1}^*} \right] \]

Terms of trade

\[P_{t+1} \]
Results

<table>
<thead>
<tr>
<th>Model</th>
<th>(4)</th>
<th>(5b)</th>
<th>(6)</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>EZ ($IES = 1.1; RRA = 10$)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Long-run risk</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Low Invest. home bias</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Vintage Capital</td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expression</th>
<th>15</th>
<th>47✓</th>
<th>43✓</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E\left[\frac{I_y P}{I}\right]$</td>
<td>15</td>
<td>3✓</td>
<td>3✓</td>
<td>5</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Model</th>
<th>(4)</th>
<th>(5b)</th>
<th>(6)</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>EZ ($IES = 1.1; RRA = 10$)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Long-run risk</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Low Invest. home bias</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vintage Capital</td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

$E[IyP/I]$	15	47✓	43✓	40
$E[Y·P/C]$	15	3✓	3✓	5
$\rho(\Delta \frac{NXQ}{GDP}, \Delta GDP)$	-0.53	-0.06✓	-0.14✓	-0.27
$\sigma(\Delta e)$	0.54	9✓	10✓	11
$\rho(C) - \rho(GDP)$	0.10	-0.12✓	-0.06✓	-0.17
Results

<table>
<thead>
<tr>
<th>Model</th>
<th>(4)</th>
<th>(5b)</th>
<th>(6)</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>EZ ($IES = 1.1; RRA = 10$)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Long-run risk</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Low Invest. home bias</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vintage Capital</td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

$E[\frac{I_y}{P}]$	15	47✓	43✓	40
$E[\frac{Y \cdot P}{C}]$	15	3✓	3✓	5
$\rho(\Delta \frac{NXQ}{GDP}, \Delta GDP)$	-0.53	-0.06✓	-0.14✓	-0.27
$\sigma(\Delta e)$	0.54	9✓	10✓	11
$\rho(C) - \rho(GDP)$	0.10	-0.12✓	-0.06✓	-0.17
$E[r^{ex}]$	0.08	0.22	3.46✓	5.01
β_{UIP}	1.04	0.81	0.51✓	-0.72
Key Differences

Short Run Shock

Long Run Shock

\[\Delta a_t \]

\[\Delta \ln I_t \]

\[\frac{NX_t}{GDP_t} \]

Model (4): EZ–BKK

Model (6): Benchmark

Student Version of MATLAB
Empirical Analysis

- Focus on G-7 countries
Empirical Analysis

- Focus on G-7 countries

- Estimate short-run shocks, $\varepsilon_{a,t}$:

$$\Delta \ln A_t = c + \beta_1 \cdot pd_{t-1} + \beta_2 \cdot rf_{t-1} + \varepsilon_{a,t}$$
Empirical Analysis

- Focus on G-7 countries

- Estimate short-run shocks, $\varepsilon_{a,t}$:

\[
\Delta \ln A_t = c + \beta_1 \cdot pd_{t-1} + \beta_2 \cdot rf_{t-1} + \epsilon_{a,t}
\]

- Estimate long-run shocks, $\varepsilon_{x,t}$:

\[
x_t = \rho x_{t-1} + \epsilon_{x,t}
\]
Empirical Analysis

- Focus on G-7 countries

- Estimate short-run shocks, $\varepsilon_{a,t}$:

 $$\Delta \ln A_t = c + \beta_1 \cdot pd_{t-1} + \beta_2 \cdot rf_{t-1} + \varepsilon_{a,t}$$

- Estimate long-run shocks, $\varepsilon_{x,t}$:

 $$x_t = \rho x_{t-1} + \varepsilon_{x,t}$$

- Estimate response of investments

 $$\Delta \ln I_{US}^t - \Delta \ln I_{World}^t = c + \beta_1 (\varepsilon_{US}^t - \varepsilon_{t,World}^t) + \beta_2 (\varepsilon_{x,t}^{US} - \varepsilon_{x,t}^{World})$$
Empirical Analysis

- Focus on G-7 countries
- Estimate short-run shocks, $\varepsilon_{a,t}$:
 \[
 \Delta \ln A_t = c + \beta_1 \cdot pd_{t-1} + \beta_2 \cdot rf_{t-1} + \varepsilon_{a,t}
 \]
- Estimate long-run shocks, $\varepsilon_{x,t}$:
 \[
 x_t = \rho x_{t-1} + \varepsilon_{x,t}
 \]
- Estimate response of investments
 \[
 \Delta \ln I_{t}^{US} - \Delta \ln I_{t}^{World} = c + \beta_1 (\varepsilon_{t}^{US} - \varepsilon_{t}^{World}) + \beta_2 (\varepsilon_{x,t}^{US} - \varepsilon_{x,t}^{World})
 \]
- Estimate response of NX of investments
 \[
 \frac{NX_{I,t}}{GDP_t} = c + \beta_1 (\varepsilon_{t}^{US} - \varepsilon_{t}^{World}) + \beta_2 (\varepsilon_{x,t}^{US} - \varepsilon_{x,t}^{World})
 \]
Empirical Evidence

Panel A: Response of Investments

<table>
<thead>
<tr>
<th></th>
<th>Benchmark</th>
<th>pd</th>
<th>pd_rf</th>
<th>pr_rf,dc</th>
<th>pr_rf,di</th>
<th>pd_rf,dc,di</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>ε_a</td>
<td>2.53</td>
<td>2.17***</td>
<td>2.31***</td>
<td>2.39***</td>
<td>2.67***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.58]</td>
<td>[0.56]</td>
<td>[0.50]</td>
<td>[0.53]</td>
<td>[0.53]</td>
</tr>
<tr>
<td></td>
<td>ε_x</td>
<td>-0.85</td>
<td>-0.74</td>
<td>-1.42</td>
<td>-1.69</td>
<td>-3.69***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[4.01]</td>
<td>[3.83]</td>
<td>[1.53]</td>
<td>[1.07]</td>
<td>[1.02]</td>
</tr>
<tr>
<td>Investments</td>
<td>ε_a</td>
<td>2.53</td>
<td>1.91***</td>
<td>2.09***</td>
<td>2.25***</td>
<td>2.60***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.55]</td>
<td>[0.53]</td>
<td>[0.49]</td>
<td>[0.50]</td>
<td>[0.50]</td>
</tr>
<tr>
<td></td>
<td>ε_x</td>
<td>-0.85</td>
<td>0.37</td>
<td>-0.98</td>
<td>-1.88</td>
<td>-3.49***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[3.60]</td>
<td>[3.29]</td>
<td>[1.59]</td>
<td>[1.04]</td>
<td>[1]</td>
</tr>
<tr>
<td>Solow</td>
<td>ε_a</td>
<td>2.53</td>
<td>2.12***</td>
<td>2.16***</td>
<td>2.04***</td>
<td>2.23***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.71]</td>
<td>[0.70]</td>
<td>[0.58]</td>
<td>[0.76]</td>
<td>[0.71]</td>
</tr>
<tr>
<td></td>
<td>ε_x</td>
<td>-0.85</td>
<td>-2.69</td>
<td>-2.96</td>
<td>-2.49</td>
<td>-5.15***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[5.97]</td>
<td>[6.10]</td>
<td>[1.69]</td>
<td>[1.17]</td>
<td>[1.06]</td>
</tr>
<tr>
<td>System</td>
<td>ε_a</td>
<td>2.53</td>
<td>1.27***</td>
<td>1.27***</td>
<td>1.39***</td>
<td>1.44***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.04]</td>
<td>[0.04]</td>
<td>[0.04]</td>
<td>[0.04]</td>
<td>[0.04]</td>
</tr>
<tr>
<td></td>
<td>ε_x</td>
<td>-0.85</td>
<td>0.30</td>
<td>-1.07***</td>
<td>0.04</td>
<td>-3.82***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.25]</td>
<td>[0.27]</td>
<td>[0.23]</td>
<td>[0.11]</td>
<td>[0.11]</td>
</tr>
</tbody>
</table>

Panel B: Response of Net Exports of Investments

<table>
<thead>
<tr>
<th></th>
<th>Benchmark</th>
<th>pd</th>
<th>pd_rf</th>
<th>pr_rf,dc</th>
<th>pr_rf,di</th>
<th>pd_rf,dc,di</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>ε_a</td>
<td>-0.35</td>
<td>-0.19</td>
<td>-0.18</td>
<td>-0.20</td>
<td>-0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.23]</td>
<td>[0.22]</td>
<td>[0.23]</td>
<td>[0.33]</td>
<td>[0.35]</td>
</tr>
<tr>
<td></td>
<td>ε_x</td>
<td>0.35</td>
<td>0.66</td>
<td>0.62</td>
<td>1.14***</td>
<td>0.64***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.90]</td>
<td>[0.71]</td>
<td>[0.42]</td>
<td>[0.17]</td>
<td>[0.20]</td>
</tr>
<tr>
<td>Investments</td>
<td>ε_a</td>
<td>-0.35</td>
<td>-0.16</td>
<td>-0.15</td>
<td>-0.18</td>
<td>-0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.22]</td>
<td>[0.22]</td>
<td>[0.22]</td>
<td>[0.32]</td>
<td>[0.34]</td>
</tr>
<tr>
<td></td>
<td>ε_x</td>
<td>0.35</td>
<td>0.54</td>
<td>0.57</td>
<td>1.07***</td>
<td>0.60***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.94]</td>
<td>[0.66]</td>
<td>[0.35]</td>
<td>[0.16]</td>
<td>[0.18]</td>
</tr>
<tr>
<td>Solow</td>
<td>ε_a</td>
<td>-0.35</td>
<td>-0.26</td>
<td>-0.23</td>
<td>-0.26</td>
<td>-0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.25]</td>
<td>[0.22]</td>
<td>[0.22]</td>
<td>[0.31]</td>
<td>[0.34]</td>
</tr>
<tr>
<td></td>
<td>ε_x</td>
<td>0.35</td>
<td>1.12</td>
<td>0.74</td>
<td>1.26***</td>
<td>0.73***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[1.02]</td>
<td>[0.81]</td>
<td>[0.54]</td>
<td>[0.19]</td>
<td>[0.22]</td>
</tr>
<tr>
<td>System</td>
<td>ε_a</td>
<td>-0.35</td>
<td>-0.24***</td>
<td>-0.17***</td>
<td>-0.19***</td>
<td>-0.12***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.01]</td>
<td>[0.02]</td>
<td>[0.02]</td>
<td>[0.02]</td>
<td>[0.01]</td>
</tr>
<tr>
<td></td>
<td>ε_x</td>
<td>0.35</td>
<td>1.26***</td>
<td>0.93***</td>
<td>0.90***</td>
<td>0.43***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.11]</td>
<td>[0.05]</td>
<td>[0.04]</td>
<td>[0.04]</td>
<td>[0.03]</td>
</tr>
</tbody>
</table>
Summary

- **Empirical Contribution:** investment outflows upon good long-run news
Summary

- **Empirical Contribution:** investment outflows upon good long-run news
- **Model Contribution:** international production economy with recursive risk-sharing and long-run risk
 - good news for the long (short) run \rightarrow capital outflows (inflows)
 - quantity anomaly turned into a regularity
Summary

Empirical Contribution: investment outflows upon good long-run news

Model Contribution: international production economy with recursive risk-sharing and long-run risk

- good news for the long (short) run \rightarrow capital outflows (inflows)
- quantity anomaly turned into a regularity

Summary

- **Empirical Contribution**: investment outflows upon good long-run news.

- **Model Contribution**: international production economy with recursive risk-sharing and long-run risk.
 - good news for the long (short) run \rightarrow capital outflows (inflows)
 - quantity anomaly turned into a regularity.

- **Broader point**: conveying the need of introducing long-run risk considerations in international investment theory.
Relation to literature

Prior work by the authors:

 - International production and investment flows

- Ai Croce Li (RFS 2012): Closed production economy with vintage capital to explain EP and VP & investment vintages
 - International perspective

Previous papers:

- Raffo (JIE 2008): NX empirically driven by quantities (GHH preferences)
- Erceg Guerrieri Gust (JEDC 2008): Home bias is strong in consumption, mild in investment
 - LRR-based AP perspective
- Tretvoll (2012): Robust-BKK with short-run risk only
Wages

\[W_t = MRS_{t}^{C,L} \]
\[W_t = \frac{\partial X_t^{Tot}}{\partial N_t} \]
\[MRS_{t}^{C,L} = \frac{\partial \tilde{C}_t / \partial L_t}{\partial \tilde{C}_t / \partial C_t} \]
\[(1 - \alpha) \frac{X_t^{Tot}}{N_t} = \phi \left(1 + \frac{1}{f} \right) N_t^{\frac{1}{T}} A_{t-1} e^{\phi \Delta a_t} \]
Time varying Pareto weights

\[S_t = S_{t-1} \frac{M_t}{M_t^*} \frac{C_t / C_{t-1}}{C_t^* / C_{t-1}^*} \]

\[= \frac{1 - \lambda}{\lambda} \left(\frac{C_t}{C_t^*} \right)^{1 - \frac{1}{3}} \left(\frac{X_t}{X_t^*} \right)^{\frac{1}{3}} \]

\[= \frac{\lambda}{1 - \lambda} \left(\frac{C_t}{C_t^*} \right)^{1 - \frac{1}{3}} \left(\frac{Y_t}{Y_t^*} \right)^{\frac{1}{3}} \]
The terms of trade is the price of imports over the price of exports:

\[P_t = \frac{1 - \lambda}{\lambda} \left(\frac{X_t}{Y_t} \right)^{\frac{1}{2}} \]
Domestic SDF

\[M_{t+1} = \frac{\partial U_{t+1}/\partial C_{t+1}}{\partial U_t/\partial C_t} \]

\[= \beta \left(\tilde{C}_{t+1} \right)^{-\frac{1}{\psi}} \left(\frac{U_{t+1}}{E_t \left[U_{t+1}^{1-\gamma} \right]^{\frac{1}{1-\gamma}}} \right)^{\frac{1}{\psi} - \gamma} \]

\[M_{t+1}^{X} = \frac{\partial U_{t+1}/\partial X_{t+1}}{\partial U_t/\partial X_t} \]

\[= \left(\frac{C_{t+1}}{C_t} \frac{X_t}{X_{t+1}} \right)^{\frac{1}{3}} M_{t+1} \]
Ordinarily equivalent transformation: \(V_t = \frac{U_t^{1 - \frac{1}{\psi}}}{1^{1 - \frac{1}{\psi}}} \)

\[
V_t = \frac{1 - \beta}{1 - \frac{1}{\psi}} \tilde{C}_t^{1 - \frac{1}{\psi}} + \beta E_t \left[V_t^{1 - \gamma} \right]^{1 - \frac{1}{\psi}} \frac{1 - \frac{1}{\psi}}{1 - \gamma}
\]

\[
U_t = \left[(1 - \beta) \tilde{C}_t^{1 - \frac{1}{\psi}} + \beta E_t \left[U_{t+1}^{1 - \gamma} \right]^{1 - \frac{1}{\psi}} \right]^{1 - \frac{1}{\psi}} \frac{1}{1 - \gamma}
\]
Calibration

TABLE 2: Calibrated Parameter Values

<table>
<thead>
<tr>
<th>Model:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(5b)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjective discount factor</td>
<td>β</td>
<td>0.985</td>
<td>0.985</td>
<td>0.985</td>
<td>0.985</td>
<td>0.985</td>
<td>0.985</td>
</tr>
<tr>
<td>Risk aversion</td>
<td>γ</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>IES</td>
<td>ψ</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Consumption home bias</td>
<td>λ</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
<td>0.97</td>
</tr>
<tr>
<td>Consumption-bundle elasticity</td>
<td>Ξ</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>Consumption-labor elasticity</td>
<td>f</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Capital Income Share</td>
<td>α</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Depreciation rate of capital</td>
<td>δ</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Investment home bias</td>
<td>ν</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
<td>0.53</td>
</tr>
<tr>
<td>Investment-bundle elasticity</td>
<td>ξ</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>Exposure of young vintages</td>
<td>ϕ_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Long run mean of productivity</td>
<td>μ</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Persistence of long run shock</td>
<td>ρ</td>
<td>0.9859</td>
<td>0.9859</td>
<td>0.9859</td>
<td>0.9859</td>
<td>0.9859</td>
<td>0.9859</td>
</tr>
<tr>
<td>Co-integration parameter</td>
<td>τ</td>
<td>5E-05</td>
<td>5E-05</td>
<td>5E-05</td>
<td>5E-05</td>
<td>5E-05</td>
<td>5E-05</td>
</tr>
<tr>
<td>Short-run shock vol.</td>
<td>σ</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
</tr>
<tr>
<td>Long-run shock vol.</td>
<td>σ_x</td>
<td>0</td>
<td>.15σ</td>
<td>.15σ</td>
<td>.15σ</td>
<td>.15σ</td>
<td>.15σ</td>
</tr>
<tr>
<td>Short-run shocks correlation</td>
<td>ρ_{srr}</td>
<td>0</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
</tr>
<tr>
<td>Long-run shocks correlation</td>
<td>ρ_{lrr}</td>
<td>–</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Notes - This table reports the parameter values used for our calibrations. All models are calibrated at an annual frequency. Model (1) refers to the original BKK economy. Model (6) is our benchmark.