Someone likes it Skewed
An Experimental Analysis of Skewness and Risk Aversion

Anna Bassi, Ric Colacito, and Paolo Fulghieri
Motivation

- Classical portfolio theory and mean-variance framework.
Motivation

- Classical portfolio theory and mean-variance framework.
- Skewness has a significant impact on individuals’ decisions:
Motivation

- Classical portfolio theory and mean-variance framework.
- Skewness has a significant impact on individuals’ decisions:
 - behavioral models predict that agents exhibit a preference for skewness in risky decisions (Benartzi and Thaler (1995), Barberis et al. (2001));
Motivation

- Classical portfolio theory and mean-variance framework.
- Skewness has a significant impact on individuals’ decisions:
 - behavioral models predict that agents exhibit a preference for skewness in risky decisions (Benartzi and Thaler (1995), Barberis et al. (2001));
 - Kahneman and Tversky (1979): positively skewed lotteries more attractive to loss-averse decision makers;
Motivation

- Classical portfolio theory and mean-variance framework.
- Skewness has a significant impact on individuals’ decisions:
 - behavioral models predict that agents exhibit a preference for skewness in risky decisions (Benartzi and Thaler (1995), Barberis et al. (2001));
 - Kahneman and Tversky (1979): positively skewed lotteries more attractive to loss-averse decision makers;
 - agents favor riskier option which offer a small probability of large gains (positive skewness).
Findings

- Lab experiment varying the three statistical moments:
Lab experiment varying the three statistical moments:

- About 50% of the subjects display preference for positive skewness and 50% display preference for negative skewness.
Findings

- Lab experiment varying the three statistical moments:
- About 50% of the subjects display preference for positive skewness and 50% display preference for negative skewness.
- Results are robust for changing the $ amount at stake in the lotteries (skewness is insensitive to the magnitudes at stake).
Findings

- Lab experiment varying the three statistical moments:
- About 50% of the subjects display preference for positive skewness and 50% display preference for negative skewness.
- Results are robust for changing the $ amount at stake in the lotteries (skewness is insensitive to the magnitudes at stake).
- The behavior of the “Skew Lovers” cannot be reconciled with standard globally concave utility functions.
Findings

- Lab experiment varying the three statistical moments:

- About 50% of the subjects display preference for positive skewness and 50% display preference for negative skewness.

- Results are robust for changing the $ amount at stake in the lotteries (skewness is insensitive to the magnitudes at stake).

- The behavior of the “Skew Lovers” cannot be reconciled with standard globally concave utility functions.

- “Skew lovers” display a lower degree of risk aversion in the Holt-Laury task, but it is still consistent with the prediction of standard utility functions.
Experimental Design

- Controlled experiment where subjects were exposed to different lottery tasks (treatments).
Experimental Design

- Controlled experiment where subjects were exposed to different lottery tasks (treatments).
- 3X2 within-subject design
Experimental Design

- Controlled experiment where subjects were exposed to different lottery tasks (treatments).

- 3X2 within-subject design
 - Tasks treatments (Risk/Skewness/Risk+Skewness);
 - Payoff treatments (High/Low).
The experiment was conducted by paper and pencil in a large classroom.
Experimental Procedures

- The experiment was conducted by paper and pencil in a large classroom.
- 12 sessions with a target number of participants equal to 15.
Experimental Procedures

- The experiment was conducted by paper and pencil in a large classroom.
- 12 sessions with a target number of participants equal to 15.
- We recruited 140 subjects (UNC e-recruit subject pool: students & employees) from March 2011 to February 2012.
Experimental Procedures

- The experiment was conducted by paper and pencil in a large classroom.

- 12 sessions with a target number of participants equal to 15.

- We recruited 140 subjects (UNC e-recruit subject pool: students & employees) from March 2011 to February 2012.

- Upon arrival, subjects were seated at workplaces placed throughout the classroom so that subjects could not see what others subjects were doing and they could not be seen by others.
Experimental Procedures

- The experiment was conducted by paper and pencil in a large classroom.

- 12 sessions with a target number of participants equal to 15.

- We recruited 140 subjects (UNC e-recruit subject pool: students & employees) from March 2011 to February 2012.

- Upon arrival, subjects were seated at workplaces placed throughout the classroom so that subjects could not see what others subjects were doing and they could not be seen by others.

- First, subjects ran the three task treatments with low payoffs first, and then with high payoffs (for a total of 8400 decisions).
Experimental Procedures

- The experiment was conducted by paper and pencil in a large classroom.

- 12 sessions with a target number of participants equal to 15.

- We recruited 140 subjects (UNC e-recruit subject pool: students & employees) from March 2011 to February 2012.

- Upon arrival, subjects were seated at workplaces placed throughout the classroom so that subjects could not see what others subjects were doing and they could not be seen by others.

- First, subjects ran the three task treatments with low payoffs first, and then with high payoffs (for a total of 8400 decisions).

- Last, subjects were asked to complete a questionnaire.
Questionnaire

- Age, Gender, Marital status, Employment status
- Income: Personal income, Family income
- Education: Major, year, highest education of parents
- Voting: vote cast in last election, intention to vote in next
- Risky actions: gambling, playing lotteries
- Religion
- Political leaning
Holt and Laury Treatment

<table>
<thead>
<tr>
<th>Option A</th>
<th>Option B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision 1 : $2.00 w.p 10% , $1.60 w.p 90%</td>
<td>$3.85 w.p 10% , $0.10 w.p 90%</td>
</tr>
<tr>
<td>Decision 2 : $2.00 w.p 20% , $1.60 w.p 80%</td>
<td>$3.85 w.p 20% , $0.10 w.p 80%</td>
</tr>
<tr>
<td>Decision 3 : $2.00 w.p 30% , $1.60 w.p 70%</td>
<td>$3.85 w.p 30% , $0.10 w.p 70%</td>
</tr>
<tr>
<td>Decision 4 : $2.00 w.p 40% , $1.60 w.p 60%</td>
<td>$3.85 w.p 40% , $0.10 w.p 60%</td>
</tr>
<tr>
<td>Decision 5 : $2.00 w.p 50% , $1.60 w.p 50%</td>
<td>$3.85 w.p 50% , $0.10 w.p 50%</td>
</tr>
<tr>
<td>Decision 6 : $2.00 w.p 60% , $1.60 w.p 40%</td>
<td>$3.85 w.p 60% , $0.10 w.p 40%</td>
</tr>
<tr>
<td>Decision 7 : $2.00 w.p 70% , $1.60 w.p 30%</td>
<td>$3.85 w.p 70% , $0.10 w.p 30%</td>
</tr>
<tr>
<td>Decision 8 : $2.00 w.p 80% , $1.60 w.p 20%</td>
<td>$3.85 w.p 80% , $0.10 w.p 20%</td>
</tr>
<tr>
<td>Decision 9 : $2.00 w.p 90% , $1.60 w.p 10%</td>
<td>$3.85 w.p 90% , $0.10 w.p 10%</td>
</tr>
<tr>
<td>Decision 10 : $2.00 w.p 100% , $1.60 w.p 0%</td>
<td>$3.85 w.p 100% , $0.10 w.p 0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option A</th>
<th>Option B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision 1 : 1.64 0.12 2.67 8.11</td>
<td>0.48 1.13 2.67 8.11</td>
</tr>
<tr>
<td>Decision 2 : 1.68 0.16 1.50 3.25</td>
<td>0.85 1.50 1.50 3.25</td>
</tr>
<tr>
<td>Decision 3 : 1.72 0.18 0.87 1.76</td>
<td>1.23 1.72 0.87 1.76</td>
</tr>
<tr>
<td>Decision 4 : 1.76 0.19 0.41 1.17</td>
<td>1.60 1.84 0.41 1.17</td>
</tr>
<tr>
<td>Decision 5 : 1.80 0.20 0.00 1.00</td>
<td>1.98 1.88 0.00 1.00</td>
</tr>
<tr>
<td>Decision 6 : 1.84 0.19 -0.41 1.17</td>
<td>2.35 1.84 -0.41 1.17</td>
</tr>
<tr>
<td>Decision 7 : 1.88 0.18 -0.87 1.76</td>
<td>2.73 1.72 -0.87 1.76</td>
</tr>
<tr>
<td>Decision 8 : 1.92 0.16 -1.50 3.25</td>
<td>3.10 1.50 -1.50 3.25</td>
</tr>
<tr>
<td>Decision 9 : 1.96 0.12 -2.67 8.11</td>
<td>3.48 1.13 -2.67 8.11</td>
</tr>
<tr>
<td>Decision 10 : 2.00 0.00 - -</td>
<td>3.85 0.00 - -</td>
</tr>
</tbody>
</table>

Notes - The top panel reports the paired choices for the risk aversion treatment. The bottom panel shows mean, volatility, skewness, and kurtosis for each lottery.
Skewness Treatment

<table>
<thead>
<tr>
<th>Decision</th>
<th>Option A</th>
<th>Option B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision 1:</td>
<td>$1.00 w.p 10% , $3.00 w.p 90%</td>
<td>$0.20 w.p 90% , $2.20 w.p 10%</td>
</tr>
<tr>
<td>Decision 2:</td>
<td>$1.00 w.p 20% , $3.00 w.p 80%</td>
<td>$0.20 w.p 80% , $2.20 w.p 20%</td>
</tr>
<tr>
<td>Decision 3:</td>
<td>$1.00 w.p 30% , $3.00 w.p 70%</td>
<td>$0.20 w.p 70% , $2.20 w.p 30%</td>
</tr>
<tr>
<td>Decision 4:</td>
<td>$1.00 w.p 40% , $3.00 w.p 60%</td>
<td>$0.20 w.p 60% , $2.20 w.p 40%</td>
</tr>
<tr>
<td>Decision 5:</td>
<td>$1.00 w.p 50% , $3.00 w.p 50%</td>
<td>$0.20 w.p 50% , $2.20 w.p 50%</td>
</tr>
<tr>
<td>Decision 6:</td>
<td>$1.00 w.p 60% , $3.00 w.p 40%</td>
<td>$0.20 w.p 40% , $2.20 w.p 60%</td>
</tr>
<tr>
<td>Decision 7:</td>
<td>$1.00 w.p 70% , $3.00 w.p 30%</td>
<td>$0.20 w.p 30% , $2.20 w.p 70%</td>
</tr>
<tr>
<td>Decision 8:</td>
<td>$1.00 w.p 80% , $3.00 w.p 20%</td>
<td>$0.20 w.p 20% , $2.20 w.p 80%</td>
</tr>
<tr>
<td>Decision 9:</td>
<td>$1.00 w.p 90% , $3.00 w.p 10%</td>
<td>$0.20 w.p 10% , $2.20 w.p 90%</td>
</tr>
<tr>
<td>Decision 10:</td>
<td>$1.00 w.p 100% , $3.00 w.p 0%</td>
<td>$0.20 w.p 0% , $2.20 w.p 100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Exp</th>
<th>Vol</th>
<th>Skew</th>
<th>Kurt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision 1:</td>
<td>2.80</td>
<td>0.60</td>
<td>-2.67</td>
<td>8.11</td>
</tr>
<tr>
<td>Decision 2:</td>
<td>2.60</td>
<td>0.80</td>
<td>-1.50</td>
<td>3.25</td>
</tr>
<tr>
<td>Decision 3:</td>
<td>2.40</td>
<td>0.92</td>
<td>-0.87</td>
<td>1.76</td>
</tr>
<tr>
<td>Decision 4:</td>
<td>2.20</td>
<td>0.98</td>
<td>-0.41</td>
<td>1.17</td>
</tr>
<tr>
<td>Decision 5:</td>
<td>2.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Decision 6:</td>
<td>1.80</td>
<td>0.98</td>
<td>0.41</td>
<td>1.17</td>
</tr>
<tr>
<td>Decision 7:</td>
<td>1.60</td>
<td>0.92</td>
<td>0.87</td>
<td>1.76</td>
</tr>
<tr>
<td>Decision 8:</td>
<td>1.40</td>
<td>0.80</td>
<td>1.50</td>
<td>3.25</td>
</tr>
<tr>
<td>Decision 9:</td>
<td>1.20</td>
<td>0.60</td>
<td>2.67</td>
<td>8.11</td>
</tr>
<tr>
<td>Decision 10:</td>
<td>1.00</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes: The top panel reports the paired choices for the skewness treatment. The bottom panel shows mean, volatility, skewness, and kurtosis for each lottery.
Skewness and Variance Treatment

<table>
<thead>
<tr>
<th>Option A</th>
<th>Option B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision 1: $1.00 w.p 10% , $1.60 w.p 90%</td>
<td>$3.85 w.p 10% , $0.10 w.p 90%</td>
</tr>
<tr>
<td>Decision 2: $1.00 w.p 20% , $1.60 w.p 80%</td>
<td>$3.85 w.p 20% , $0.10 w.p 80%</td>
</tr>
<tr>
<td>Decision 3: $1.00 w.p 30% , $1.60 w.p 70%</td>
<td>$3.85 w.p 30% , $0.10 w.p 70%</td>
</tr>
<tr>
<td>Decision 4: $1.00 w.p 40% , $1.60 w.p 60%</td>
<td>$3.85 w.p 40% , $0.10 w.p 60%</td>
</tr>
<tr>
<td>Decision 5: $1.00 w.p 50% , $1.60 w.p 50%</td>
<td>$3.85 w.p 50% , $0.10 w.p 50%</td>
</tr>
<tr>
<td>Decision 6: $1.00 w.p 60% , $1.60 w.p 40%</td>
<td>$3.85 w.p 60% , $0.10 w.p 40%</td>
</tr>
<tr>
<td>Decision 7: $1.00 w.p 70% , $1.60 w.p 30%</td>
<td>$3.85 w.p 70% , $0.10 w.p 30%</td>
</tr>
<tr>
<td>Decision 8: $1.00 w.p 80% , $1.60 w.p 20%</td>
<td>$3.85 w.p 80% , $0.10 w.p 20%</td>
</tr>
<tr>
<td>Decision 9: $1.00 w.p 90% , $1.60 w.p 10%</td>
<td>$3.85 w.p 90% , $0.10 w.p 10%</td>
</tr>
<tr>
<td>Decision 10: $1.00 w.p 100% , $1.60 w.p 0%</td>
<td>$3.85 w.p 100% , $0.10 w.p 0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exp</th>
<th>Vol</th>
<th>Skew</th>
<th>Kurt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision 1: 1.54</td>
<td>0.18</td>
<td>-2.67</td>
<td>8.11</td>
</tr>
<tr>
<td>Decision 2: 1.48</td>
<td>0.24</td>
<td>-1.50</td>
<td>3.25</td>
</tr>
<tr>
<td>Decision 3: 1.42</td>
<td>0.28</td>
<td>-0.87</td>
<td>1.76</td>
</tr>
<tr>
<td>Decision 4: 1.36</td>
<td>0.29</td>
<td>-0.41</td>
<td>1.17</td>
</tr>
<tr>
<td>Decision 5: 1.30</td>
<td>0.30</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Decision 6: 1.24</td>
<td>0.29</td>
<td>0.41</td>
<td>1.17</td>
</tr>
<tr>
<td>Decision 7: 1.18</td>
<td>0.28</td>
<td>0.87</td>
<td>1.76</td>
</tr>
<tr>
<td>Decision 8: 1.12</td>
<td>0.24</td>
<td>1.50</td>
<td>3.25</td>
</tr>
<tr>
<td>Decision 9: 1.06</td>
<td>0.18</td>
<td>2.67</td>
<td>8.11</td>
</tr>
<tr>
<td>Decision 10: 1.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Skewness Treatment
Skewness Treatment

![Skewness Treatments Graph]

- Low Payoffs
- High Payoffs
- Power-expo

Percentage of A choices vs Skewness Treatments

10 / 16
Skewness Decomposed

Skewness Treatment (Skew Averse)

- Low Payoffs
- High Payoffs
- Estimate

Skewness Treatment (Skew Lover)

- Low Payoffs
- High Payoffs
- Estimate
Skewness Decomposed

\[\gamma = 0.84 \]

\[\gamma = -0.80 \]
Holt and Laury Treatment

Risk Aversion Treatment (Low Payoffs)

Risk Aversion Treatment (High Payoffs)
Holt and Laury Treatment

\[\gamma_{\text{Skew Averse}} = 0.69 \]
\[\gamma_{\text{Skew Lover}} = 0.19 \]

\[\gamma_{\text{Skew Averse}} = 0.99 \]
\[\gamma_{\text{Skew Lover}} = 0.57 \]
Skewness and Variance Treatment

Risk and Skewness Treatment (Low Payoffs)

Risk and Skewness Treatment (High Payoffs)
Skewness and Variance Treatment

\[\gamma_{\text{Skew Averse}} = 0.98 \]
\[\gamma_{\text{Skew Lover}} = 0.48 \]

\[\gamma_{\text{Skew Averse}} = 0.99 \]
\[\gamma_{\text{Skew Lover}} = 0.56 \]
Changing Risk Aversion

\[u(x) = \frac{x^{1-\gamma_1}}{1-\gamma_1} \cdot I(x \leq \theta) + \left[\frac{x^{1-\gamma_2}}{1-\gamma_2} - \kappa \right] \cdot I(x > \theta) \]
Changing Risk Aversion

\[u(x) = \frac{x^{1-\gamma_1}}{1-\gamma_1} \cdot I(x \leq \theta) + \left[\frac{x^{1-\gamma_2}}{1-\gamma_2} - \kappa \right] \cdot I(x > \theta) \]

- Risk Aversion changes before and after the point \(\theta \)
Changing Risk Aversion

\[u(x) = \frac{x^{1-\gamma_1}}{1-\gamma_1} \cdot I(x \leq \theta) + \left[\frac{x^{1-\gamma_2}}{1-\gamma_2} - \kappa \right] \cdot I(x > \theta) \]

- Risk Aversion changes before and after the point \(\theta \)
- Estimate \(\gamma_1, \gamma_2, \) and \(\theta \) for the two groups
Utility functions

Skew Averse

Skew Lover
Utility functions

\[\gamma_1 = 0.9024 \quad \gamma_1 = -8.390 \]
\[\gamma_2 = 0.9022 \quad \gamma_2 = 0.509 \]
\[\theta = 0.676 \quad \theta = 0.234 \]
Concluding Remarks

- Half of the subjects display preference for positive skewness and the other half for negative skewness.
Concluding Remarks

- Half of the subjects display preference for positive skewness and the other half for negative skewness.
- Preference for skewness is insensitive to the magnitudes at stake.

Why do we care? Individuals' behavior in the face of negatively skewed gambles is a key ingredient in the "rare events" literature.

What happens if the economy is populated by skew averse and skew loving agents?

How is wealth distributed between the two groups?

What happens to the compensation for risk?
Concluding Remarks

- Half of the subjects display preference for positive skewness and the other half for negative skewness.
- Preference for skewness is insensitive to the magnitudes at stake.
- The behavior of the “Skew Lovers” cannot be reconciled with standard globally concave utility functions (risk lover).
Concluding Remarks

- Half of the subjects display preference for positive skewness and the other half for negative skewness.

- Preference for skewness is insensitive to the magnitudes at stake.

- The behavior of the “Skew Lovers” cannot be reconciled with standard globally concave utility functions (risk lover).

- “Skew lovers” are less risk averse than “skew averse” in the Holt-Laury task.
Concluding Remarks

- Half of the subjects display preference for positive skewness and the other half for negative skewness.
- Preference for skewness is insensitive to the magnitudes at stake.
- The behavior of the “Skew Lovers” cannot be reconciled with standard globally concave utility functions (risk lover).
- “Skew lovers” are less risk averse than “skew averse” in the Holt-Laury task.
- Why do we care? Individuals’ behavior in the face of negatively skewed gambles is a key ingredient in the “rare events” literature.
 - What happens if the economy is populated by skew averse and skew loving agents?
 - How is wealth distributed between the two groups?
 - What happens to the compensation for risk?