Benefits from U.S. Monetary Policy Experimentation in the Days of Samuelson and Solow and Lucas

Timothy Cogley, Riccardo Colacito and Thomas Sargent
Motivation

- When a policy maker has multiple submodels, Bayes’ law and a Bellman equation tell him to experiment. Nevertheless, Blinder, Lucas, and others have told policy makers not to experiment (i.e., to ignore the Bellman equation).

- We study the benefits from listening to Bellman (and not Lucas and Blinder).
Central Bank chooses \(v_t \) to

\[
\min E_0 \sum_{t=0}^{\infty} \beta^t (U_t^2 + \lambda v_t^2), \text{ s.t.}
\]

- **Model 1:**
 \[
 U_t = \bar{U}_1 + A_1 U_{t-1} + B_1 \pi_t + C_{U,1} \eta_{1,t} \\
 \pi_t = v_{t-1} + C_{\pi} \eta_{3,t}
 \]

- **Model 2:**
 \[
 U_t = \bar{U}_2 + A_2 U_{t-1} + B_2 (\pi_t - v_{t-1}) + C_{U,2} \eta_{2,t} \\
 \pi_t = v_{t-1} + C_{\pi} \eta_{3,t}
 \]
The economy

- Central Bank chooses \(v_t \) to

\[
\min E_0 \sum_{t=0}^{\infty} \beta^t (U_t^2 + \lambda v_t^2), \text{ s.t.}
\]

- Model 1 \((\alpha_t)\):

\[
U_t = \bar{U}_1 + A_1 U_{t-1} + B_1 \pi_t + C_{U,1} \eta_{1,t} \\
\pi_t = v_{t-1} + C_{\pi} \eta_{3,t}
\]

- Model 2 \((1 - \alpha_t)\):

\[
U_t = \bar{U}_2 + A_2 U_{t-1} + B_2 (\pi_t - v_{t-1}) + C_{U,2} \eta_{2,t} \\
\pi_t = v_{t-1} + C_{\pi} \eta_{3,t}
\]

- Bayesian updating:

\[
\alpha_t = B(\alpha_{t-1}, U_t)
\]
Central Bank chooses v_t to

$$\min E_0 \sum_{t=0}^{\infty} .995^t (U_t^2 + 0.1v_t^2), \text{ s.t.}$$

- **Model 1** (α_t):
 $$U_t = 0.0023 + 0.7971U_{t-1} - 0.2761\pi_t + 0.0054\eta_{1,t}$$
 $$\pi_t = v_{t-1} + 0.0055\eta_{3,t}$$

- **Model 2** ($1 - \alpha_t$):
 $$U_t = 0.0007 + 0.8468U_{t-1} - 0.2489(\pi_t - v_{t-1}) + 0.0055\eta_{2,t}$$
 $$\pi_t = v_{t-1} + 0.0055\eta_{3,t}$$

- **Bayesian updating**:
 $$\alpha_t = B(\alpha_{t-1}, U_t)$$
Plan of the talk

- Use Bayes’ law to get a transition equation for α_t
- Bellman equations
 1. Bayesian problem
 2. Anticipated utility
- Policy and value functions
- Experiments
Using Bayes’ law:

\[\log \frac{\alpha_t}{1 - \alpha_t} = \log \frac{\alpha_{t-1}}{1 - \alpha_{t-1}} + \log \frac{p_1(U_t | U_{t-1}, v_{t-1})}{p_2(U_t | U_{t-1}, v_{t-1})} \]

Timing protocol

\[
\ldots \quad v_{t-1} \quad \pi_t, U_t \quad \alpha_t \quad v_t
\]
Evolution of α_t

Using Bayes’ law:

$$\log \frac{\alpha_t}{1 - \alpha_t} = \log \frac{\alpha_{t-1}}{1 - \alpha_{t-1}} + \log \frac{p_1(U_t|U_{t-1}, v_{t-1})}{p_2(U_t|U_{t-1}, v_{t-1})}$$

Timing protocol

$$\ldots \quad v_{t-1} \quad \pi_t, U_t \quad \alpha_t \quad v_t$$

α_t is a martingale from the point of view of the Bayesian agent.

If the prior attaches nonzero probability to the model that actually generates the economy, then α_t converges almost surely under that measure.
Bayesian Problem

\[V \left(U_t, \alpha_t \right) = \max_{v_t} \left\{ -\left(U_t^2 + \lambda v_t^2 \right) \right. \]
\[+ \beta \alpha_t \int V \left(U_{1,t+1}, B(\alpha_t, U_{1,t+1}) \right) dF(\varepsilon_{1,t+1}) \]
\[+ \beta (1 - \alpha_t) \int V \left(U_{2,t+1}, B(\alpha_t, U_{2,t+1}) \right) dF(\varepsilon_{2,t+1}) \}\]

subject to:

\[U_{1,t+1} = \overline{U}_1 + A_1 U_t + B_1 v_t + C_1 \varepsilon_{1,t+1} \]
\[U_{2,t+1} = \overline{U}_2 + A_2 U_t + C_2 \varepsilon_{2,t+1} \]
Bellman equation:

\[W (U_t, \alpha) = \max_{v_t} \left\{ - (U_t^2 + \lambda v_t^2) \right. \]

\[+ \beta \alpha \int W (U_{1,t+1}, \alpha) dF(\varepsilon_{1,t+1}) \]

\[+ \beta (1 - \alpha) \int W (U_{2,t+1}, \alpha) dF(\varepsilon_{2,t+1}) \right\} \]

subject to:

\[U_{1,t+1} = \overline{U}_1 + A_1 U_t + B_1 v_t + C_1 \varepsilon_{1,t+1} \]

\[U_{2,t+1} = \overline{U}_2 + A_2 U_t + C_2 \varepsilon_{2,t+1} \]
Anticipated Utility

- Bellman equation:

\[
W (U_t, \alpha) = \max_{v_t} \left\{ - (U_t^2 + \lambda v_t^2) \right. \\
+ \beta \alpha \int W (U_{1,t+1}, \alpha) dF(\varepsilon_{1,t+1}) \\
+ \beta (1 - \alpha) \int W (U_{2,t+1}, \alpha) dF(\varepsilon_{2,t+1}) \left. \right\}
\]

- Policy function

\[
v_t = w(U_t, \alpha)
\]
Bellman equation:

\[W(U_t, \alpha) = \max_{v_t} \left\{ -(U_t^2 + \lambda v_t^2) \right. \]
\[+ \beta \alpha \int W(U_{1,t+1}, \alpha) \, dF(\varepsilon_{1,t+1}) \]
\[+ \beta (1 - \alpha) \int W(U_{2,t+1}, \alpha) \, dF(\varepsilon_{2,t+1}) \right\} \]

Policy function

\[v_t = w(U_t, \alpha_t) \]
\[\alpha_t = B(\alpha_{t-1}, U_t) \]
Anticipated Utility cont’d

- Value of the economy with AU:

\[
\tilde{W}(U_t, \alpha_t) = -U_t^2 - \lambda w(U_t, \alpha_t)^2
\]

\[
+ \beta \alpha_t \int \tilde{W}(U_{1,t+1}, B(\alpha_t, U_{1,t+1})) \, dF(\varepsilon_{1,t+1})
\]

\[
+ \beta (1 - \alpha_t) \int \tilde{W}(U_{2,t+1}, B(\alpha_t, U_{2,t+1})) \, dF(\varepsilon_{2,t+1})
\]

subject to:

\[
U_{1,t+1} = \bar{U}_1 + A_1 U_t + B_1 v_t + C_1 \varepsilon_{1,t+1}
\]

\[
U_{2,t+1} = \bar{U}_2 + A_2 U_t + C_2 \varepsilon_{2,t+1}
\]
Policy functions

(a) Bayesian Problem

(b) Anticipated Utility
Policy functions (Slices)

\(\alpha \approx 0\)
\(\alpha = 0.2\)
\(\alpha = 0.40\)
\(\alpha = 0.80\)
\(\alpha \approx 1\)

Value functions

Prior on Samuelson and Solow (α)
Value of experimentation
Suppose that one model generates the data:

- How long does it take to learn it?
- How much faster can we learn it with experimentation?
- How different are inflation and unemployment in the learning process?
Forgetting Lucas

Prior on Samuelson and Solow (α)

Optimal inflation (v)

Unemployment gap (U)

Forgetting Lucas

Prior on Samuelson and Solow (α)

Optimal inflation (v)

Unemployment gap (U)
Prior on Samuelson and Solow (α)

Optimal inflation (v)

Unemployment gap (U)

Conclusions

- Benefits of experimentation, but not too big.
- Samuelson-Solow is less sensitive to small doubts.
- Limitations:
 1. Only two models are on the table.
 2. Models’ parameters are assumed to be known.
- Results vary with λ.
- Cogley, Colacito, Hansen, and Sargent (2005) compute decisions that are robust to:
 1. misspecifications of the dynamics within each submodel
 2. misspecifications of the prior distribution over the two submodels