Market Prices of Risk with Diverse Beliefs, Learning, and Catastrophes: discussion

Riccardo Colacito

American Economic Association Meetings, Chicago, 1/2012
Introduction

Three states for aggregate endowment growth:
→ **High** growth, **Mild** recession, **Deep** recession
Introduction

- Three states for aggregate endowment growth:
 → **High** growth, **Mild** recession, **Deep** recession

- Two agents:
 → Agree on probability of positive growth vs. any kind of recession
 → One agent is less well informed
 - More pessimistic about a deep recession
 - Learns over time using Bayes’ rule
Introduction

Three states for aggregate endowment growth:
→ High growth, Mild recession, Deep recession

Two agents:
→ Agree on probability of positive growth vs. any kind of recession
→ One agent is less well informed
 ▪ More pessimistic about a deep recession
 ▪ Learns over time using Bayes’ rule

Financial Markets:
1. Complete Markets
 → Agent with wrong beliefs loses wealth over time
 → Market Price of Risk is low
2. One non-state contingent bond
 → Agent with correct beliefs loses wealth over time
 → Market Price of Risk is high
Three states for aggregate endowment growth:
→ **High** growth, **Mild** recession, **Deep** recession

Two agents:
→ Agree on probability of positive growth vs. any kind of recession
→ One agent is less well informed
 → More pessimistic about a deep recession
 → Learns over time using Bayes’ rule

Financial Markets:
1. **Complete Markets**
 → Agent with **wrong** beliefs loses wealth over time
 → Market Price of Risk is low
2. One non-state contingent bond
 → Agent with **correct** beliefs loses wealth over time
 → Market Price of Risk is high
3. **Two bonds**
 → A catastrophe bond + a non-catastrophe bond
Model(s)

- Two periods model:

\[U_i = \log(C_i) + \beta \left[\pi_{i,H} \cdot \log(C'_{i,H}) + \pi_{i,M} \cdot \log(C'_{i,M}) + \pi_{i,D} \cdot \log(C'_{i,D}) \right] \]
Model(s)

- Two periods model:

\[U_i = \log(C_i) + \beta \left[\pi_{i,H} \cdot \log(C'_{i,H}) + \pi_{i,M} \cdot \log(C'_{i,M}) + \pi_{i,D} \cdot \log(C'_{i,D}) \right] \]

- Endowments are half of aggregate \(Y \)
Model(s)

- Two periods model:
 \[U_i = \log(C_i) + \beta \left[\pi_{i,H} \cdot \log(C_{i,H}) + \pi_{i,M} \cdot \log(C_{i,M}) + \pi_{i,D} \cdot \log(C_{i,D}) \right] \]

- Endowments are half of aggregate \(Y \)

- Final period’s budget constraints: consume endowments \(\pm \) savings
Two periods model:

\[U_i = \log(C_i) + \beta \left[\pi_{i,H} \cdot \log(C'_{i,H}) + \pi_{i,M} \cdot \log(C'_{i,M}) + \pi_{i,D} \cdot \log(C'_{i,D}) \right] \]

- Endowments are half of aggregate \(Y \)
- Final period’s budget constraints: consume endowments ± savings
- Date zero budget constraints depends on markets’ structure
Model(s)

- Two periods model:
 \[U_i = \log(C_i) + \beta \left[\pi_{i,H} \cdot \log(C'_{i,H}) + \pi_{i,M} \cdot \log(C'_{i,M}) + \pi_{i,D} \cdot \log(C'_{i,D}) \right] \]

- Endowments are half of aggregate \(Y \)

- Final period's budget constraints: consume endowments ± savings

- Date zero budget constraints depends on markets' structure
 - One bond: \(C_i + b_i \cdot p_b = 1/2 \cdot Y \)
Model(s)

- Two periods model:

\[U_i = \log(C_i) + \beta \left[\pi_{i,H} \cdot \log(C'_{i,H}) + \pi_{i,M} \cdot \log(C'_{i,M}) + \pi_{i,D} \cdot \log(C'_{i,D}) \right] \]

- Endowments are half of aggregate \(Y \)

- Final period’s budget constraints: consume endowments \(\pm \) savings

- Date zero budget constraints depends on markets’ structure

1. One bond: \(C_i + b_i \cdot p_b = \frac{1}{2} \cdot Y \)

3. Three bonds: \(C_i + b_{H,H} \cdot p_{b_H} + b_{M,M} \cdot p_{b_M} + b_{D,D} \cdot p_{b_D} = \frac{1}{2} \cdot Y \)
Two periods model:

\[U_i = \log(C_i) + \beta \left[\pi_{i,H} \log(C'_{i,H}) + \pi_{i,M} \log(C'_{i,M}) + \pi_{i,D} \log(C'_{i,D}) \right] \]

Endowments are half of aggregate \(Y \)

Final period’s budget constraints: consume endowments \(\pm \) savings

Date zero budget constraints depends on markets’ structure

1. One bond: \(C_i + b_i \cdot p_b = 1/2 \cdot Y \)

2. Two bonds: \(C_i + b_{\text{no disaster}} \cdot p_{b_{\text{no disaster}}} + b_{\text{disaster}} \cdot p_{b_{\text{disaster}}} = 1/2 \cdot Y \)

3. Three bonds: \(C_i + b_H \cdot p_{b_H} + b_M \cdot p_{b_M} + b_D \cdot p_{b_D} = 1/2 \cdot Y \)
Two periods model:

$$U_i = \log(C_i) + \beta \left[\pi_{i,H} \cdot \log(C'_{i,H}) + \pi_{i,M} \cdot \log(C'_{i,M}) + \pi_{i,D} \cdot \log(C'_{i,D}) \right]$$

- Endowments are half of aggregate Y
- Final period’s budget constraints: consume endowments \pm savings
- Date zero budget constraints depends on markets’ structure
 1. One bond: $C_i + b_i \cdot p_b = 1/2 \cdot Y$
 2. Two bonds: $C_i + b_{\text{no disaster}} \cdot p_{b_{\text{no disaster}}} + b_{\text{disaster}} \cdot p_{b_{\text{disaster}}} = 1/2 \cdot Y$
 3. Three bonds: $C_i + b_{H} \cdot p_{b_H} + b_{M} \cdot p_{b_M} + b_{D} \cdot p_{b_D} = 1/2 \cdot Y$

- Bonds are in zero net supply
Calibration

- Aggregate endowments and probabilities for date 1

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>M</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth rate of Y</td>
<td>1.03</td>
<td>0.99</td>
<td>0.90</td>
</tr>
<tr>
<td>True probabilities</td>
<td>0.50</td>
<td>0.495</td>
<td>0.005</td>
</tr>
<tr>
<td>Agent 1 beliefs</td>
<td>0.50</td>
<td>0.490</td>
<td>0.010</td>
</tr>
<tr>
<td>Agent 2 beliefs</td>
<td>0.50</td>
<td>0.495</td>
<td>0.005</td>
</tr>
</tbody>
</table>

- Date 0 aggregate endowment is equal to 1
- Discount factor β is 0.95
What is going to happen?
What is going to happen?

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>M</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent 1 beliefs</td>
<td>0.50</td>
<td>0.490</td>
<td>0.010</td>
</tr>
<tr>
<td>Agent 2 beliefs</td>
<td>0.50</td>
<td>0.495</td>
<td>0.005</td>
</tr>
</tbody>
</table>
What is going to happen?

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>M</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent 1 beliefs</td>
<td>0.50</td>
<td>0.490</td>
<td>0.010</td>
</tr>
<tr>
<td>Agent 2 beliefs</td>
<td>0.50</td>
<td>0.495</td>
<td>0.005</td>
</tr>
</tbody>
</table>

- Agent 1 is the pessimist in the disaster market
What is going to happen?

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>M</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent 1 beliefs</td>
<td>0.50</td>
<td>0.490</td>
<td>0.010</td>
</tr>
<tr>
<td>Agent 2 beliefs</td>
<td>0.50</td>
<td>0.495</td>
<td>0.005</td>
</tr>
</tbody>
</table>

- Agent 1 is the pessimist in the disaster market
- Agent 1 is the optimist in the no-disaster market
What is going to happen?

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>M</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent 1</td>
<td>0.50</td>
<td>0.490</td>
<td>0.010</td>
</tr>
<tr>
<td>Agent 2</td>
<td>0.50</td>
<td>0.495</td>
<td>0.005</td>
</tr>
</tbody>
</table>

- Agent 1 is the pessimist in the disaster market \((b_{\text{dis}} = 0.1501 > 0) \)
- Agent 1 is the optimist in the no-disaster market \((b_{\text{no\,dis}} = -.001 < 0) \)
What is going to happen?

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>M</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent 1 beliefs</td>
<td>0.50</td>
<td>0.490</td>
<td>0.010</td>
</tr>
<tr>
<td>Agent 2 beliefs</td>
<td>0.50</td>
<td>0.495</td>
<td>0.005</td>
</tr>
</tbody>
</table>

- Agent 1 is the pessimist in the disaster market \((b_{\text{dis}} = 0.1501 > 0) \)
- Agent 1 is the optimist in the no-disaster market \((b_{\text{no dis}} = -0.001 < 0) \)

<table>
<thead>
<tr>
<th></th>
<th>One bond</th>
<th>Two bonds</th>
<th>Three bonds</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E[C'_1] - E[C'_2])</td>
<td>0.0001</td>
<td>-0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td>Agent 1 MPR</td>
<td>0.089</td>
<td>0.051</td>
<td>0.051</td>
</tr>
<tr>
<td>Agent 2 MPR</td>
<td>0.022</td>
<td>0.052</td>
<td>0.051</td>
</tr>
</tbody>
</table>
Changing beliefs

- Make Agent 1 more pessimistic
Changing beliefs

- Make Agent 1 more pessimistic

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>M</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth rate of Y</td>
<td>1.03</td>
<td>0.99</td>
<td>0.90</td>
</tr>
<tr>
<td>True probabilities</td>
<td>0.50</td>
<td>0.495</td>
<td>0.005</td>
</tr>
<tr>
<td>Agent 1 beliefs</td>
<td>0.50</td>
<td>0.490</td>
<td>0.010</td>
</tr>
<tr>
<td>Agent 2 beliefs</td>
<td>0.50</td>
<td>0.495</td>
<td>0.005</td>
</tr>
</tbody>
</table>
Changing beliefs

- Make Agent 1 more pessimistic

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>M</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth rate of Y</td>
<td>1.03</td>
<td>0.99</td>
<td>0.90</td>
</tr>
<tr>
<td>True probabilities</td>
<td>0.50</td>
<td>0.495</td>
<td>0.005</td>
</tr>
<tr>
<td>Agent 1 beliefs</td>
<td>0.50↓</td>
<td>0.490↑</td>
<td>0.010</td>
</tr>
<tr>
<td>Agent 2 beliefs</td>
<td>0.50</td>
<td>0.495</td>
<td>0.005</td>
</tr>
</tbody>
</table>
Changing beliefs

- Make Agent 1 more pessimistic

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>M</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth rate of Y</td>
<td>1.03</td>
<td>0.99</td>
<td>0.90</td>
</tr>
<tr>
<td>True probabilities</td>
<td>0.50</td>
<td>0.495</td>
<td>0.005</td>
</tr>
<tr>
<td>Agent 1 beliefs</td>
<td>0.50↓</td>
<td>0.490↑</td>
<td>0.010</td>
</tr>
<tr>
<td>Agent 2 beliefs</td>
<td>0.50</td>
<td>0.495</td>
<td>0.005</td>
</tr>
</tbody>
</table>

- Agent 1 is now the pessimist in both markets
Agent 1: assets holdings

- **Non catastrophe bond(s)**
 - Baseline case:
 - Probability of state H:
 - 0
 - 0.25
 - 0.5
 - -0.002
 - -0.001
 - 0
 - 0.001
 - 0.002
 - 0.003
 - One bond:
 - Baseline case:
 - Probability of state H:
 - 0
 - 0.25
 - 0.5
 - -0.002
 - -0.001
 - 0
 - 0.001
 - 0.002
 - 0.003

- **Catastrophe bond**
 - Baseline case:
 - Probability of state H:
 - 0
 - 0.25
 - 0.5
 - 0.148
 - 0.149
 - 0.15
 - 0.151
 - 0.148
 - 0.149
 - 0.15

Graphs showing the probability of state H for non-catastrophe and catastrophe bonds with one and two bonds.
Average difference of terminal consumptions (agent 1 minus agent 2)
Market Prices of Risk

Introduction

Model(s)

- Eqm with 2 bonds
- Changing beliefs

Conclusion

Diagram:
- **RE MPR (Agent 1, pessimist)**
- **RE MPR (Agent 2)**
 - One bond
 - Two bonds
 - Three bonds
Concluding Remarks

- We may not have to shut down the market for catastrophes.
- The key is to make the less well informed agent pessimistic in both markets.
- In this example: results with two bonds are similar to results with one bond.