Robustly Optimal Monetary Policy in a Microfounded New Keynesian Model: discussion

Riccardo Colacito

ECB conference on “Information, Beliefs and Economic Policy”, Frankfurt, 12/2011
Roadmap

- Relation to the literature
Roadmap

- Relation to the literature
- Main results hinge on local log-linear approximation
Roadmap

- Relation to the literature
- Main results hinge on local log-linear approximation
- What are we missing by shutting down higher order moments?
Roadmap

- Relation to the literature
- Main results hinge on local log-linear approximation
- What are we missing by shutting down higher order moments?
 → Asset Pricing implications of optimal monetary policy
Relation to the Literature

Clarida, Gali, Gertler (JEL, 1999)

1. The Central Bank minimizes

\[\frac{1}{2} E_{t-1} \sum_{j=0}^{\infty} \beta^j \left[\pi_{t+j}^2 + \lambda (x_{t+j} - x^*)^2 \right] \]

2. Private Sector’s Aggregate supply equation is

\[\pi_t = \kappa x_t + \beta E_t \pi_{t+1} + \sigma_u w_t \]
Relation to the Literature

1. The Central Bank minimizes

\[\frac{1}{2} E_{t-1} \sum_{j=0}^{\infty} \beta^j \left[\pi_{t+j}^2 + \lambda (x_{t+j} - x^*)^2 \right] \]

2. Private Sector's Aggregate supply equation is

\[\pi_t = \kappa x_t + \beta \hat{E}_t \pi_{t+1} + \sigma_u w_t \]
The Central Bank minimizes

\[\frac{1}{2} E_{t-1} \sum_{j=0}^{\infty} \beta^j \left[\pi_{t+j}^2 + \lambda (x_{t+j} - x^*)^2 \right] \]

Private Sector’s Aggregate supply equation is

\[\pi_t = \kappa x_t + \beta E_{t} m_{t+1} \pi_{t+1} + \sigma_u w_t \]

\[m_{t+1} = \frac{\text{Distorted Probability}}{\text{Approximating Model Probability}} \]
Relation to the Literature

1. The Central Bank minimizes

\[\frac{1}{2} E_{t-1} \sum_{j=0}^{\infty} \beta^j \left[\pi_{t+j}^2 + \lambda (x_{t+j} - x^*)^2 \right] - \theta E_{t-1} \sum_{j=0}^{\infty} \beta^j m_{t+j} \log m_{t+j} \]

2. Private Sector’s Aggregate supply equation is

\[\pi_t = \kappa x_t + \beta E_t m_{t+1} \pi_{t+1} + \sigma_u w_t \]

\[m_{t+1} = \frac{\text{Distorted Probability}}{\text{Approximating Model Probability}} \]
Relation to the Literature

This Paper

1. The Central Bank minimizes

\[\frac{1}{2} E_{t-1} \sum_{j=0}^{\infty} \beta^j \left[\pi_{t+j}^2 + \lambda(x_{t+j} - x^*)^2 \right] - \theta E_{t-1} \sum_{j=0}^{\infty} \beta^j m_{t+j} \log m_{t+j} \]

2. Private Sector’s Aggregate supply equation is

\[\pi_t = \kappa x_t + \beta E_t m_{t+1} \pi_{t+1} + \sigma_u w_t \]

- \(m_{t+1} = \frac{\text{Distorted Probability}}{\text{Approximating Model Probability}} \)

Where is the aggregate supply equation coming from?

What does it look like in a New-Keynesian model?
Answered and Open Questions

- Where is the aggregate supply equation coming from?
Where is the aggregate supply equation coming from?

→ An otherwise standard New Keynesian model

→ E_t is replaced by \hat{E}_t in Private Sector’s side of the Economy
Answered and Open Questions

Where is the aggregate supply equation coming from?

→ An otherwise standard New Keynesian model
→ E_t is replaced by \hat{E}_t in Private Sector’s side of the Economy
→ An authentic tour de force: I counted 168 equations!
Answered and Open Questions

Where is the aggregate supply equation coming from?

→ An otherwise standard New Keynesian model

→ E_t is replaced by \hat{E}_t in Private Sector’s side of the Economy

→ An authentic tour de force: I counted 168 equations!

What does it look like in a New-Keynesian model?
Answered and Open Questions

- Where is the aggregate supply equation coming from?
 - An otherwise standard New Keynesian model
 - E_t is replaced by \hat{E}_t in Private Sector’s side of the Economy
 - An authentic tour de force: I counted 168 equations!

- What does it look like in a New-Keynesian model?
 - As in Woodford (2010), up to a first order local log-linear approx
Answered and Open Questions

- Where is the aggregate supply equation coming from?
 → An otherwise standard New Keynesian model
 → E_t is replaced by \hat{E}_t in Private Sector’s side of the Economy
 → An authentic tour de force: I counted 168 equations!

- What does it look like in a New-Keynesian model?
 → As in Woodford (2010), up to a first order local log-linear approx

- Are we missing any interesting economics?
Woodford (2010) revisited

1. The Central Bank minimizes

\[\frac{1}{2} E_{t-1} \sum_{j=0}^{\infty} \beta^j \left[\pi_{t+j}^2 + \lambda (x_{t+j} - x^*)^2 \right] - \theta E_{t-1} \sum_{j=0}^{\infty} \beta^j m_{t+j} \log m_{t+j} \]

2. Private Sector’s Aggregate supply equation is

\[\pi_t = \kappa x_t + \beta E_t m_{t+1} g(\pi_{t+1}) + \sigma_u w_t \]

where \(g(\pi_{t+1}) \) is a possibly non-linear function of \(\pi_{t+1} \).
My question in a nutshell

Woodford (2010) revisited

1. The Central Bank minimizes

$$\frac{1}{2} E_t \sum_{j=0}^{\infty} \beta^j \left[\pi_{t+j}^2 + \lambda (x_{t+j} - x^*)^2 \right] - \theta E_{t-1} \sum_{j=0}^{\infty} \beta^j m_{t+j} \log m_{t+j}$$

2. Private Sector’s Aggregate supply equation is

$$\pi_t = \kappa x_t + \beta E_t m_{t+1} (\pi_{t+1} + \alpha \pi_{t+1}^2) + \sigma_u w_t$$

What if $g(\pi_{t+1})$ is a quadratic function of π_{t+1}?
The key: figure out Distorted Probabilities
The key: figure out Distorted Probabilities

Notation:

- $f(w)$ is the **approx. model** pdf of AS shock
- $\hat{f}(w) = m \cdot f(w)$ is the **distorted** pdf of AS shock
The key: figure out Distorted Probabilities

Notation:

- $f(w)$ is the **approx. model** pdf of AS shock
- $\hat{f}(w) = m \cdot f(w)$ is the **distorted** pdf of AS shock

\[f(w) = N(0, 1) \]

\[\hat{f}(w) = ? \]
The key: figure out Distorted Probabilities

Notation:
- $f(w)$ is the **approx. model** pdf of AS shock
- $\hat{f}(w) = m \cdot f(w)$ is the **distorted** pdf of AS shock

Results:
- In baseline log-linear model:
 $\hat{f}(w) = \mathcal{N}(\mu_t, 1)$
 - Conditional Mean is time-varying
 - Conditional Variance is not time-varying
- In quadratic model:
 $\hat{f}(w) = \mathcal{N}(\mu_t + \nu_t, \sigma_t)$
 - Conditional Mean is time-varying
 - Conditional Variance is time-varying
The key: figure out Distorted Probabilities

Notation:

- $f(w)$ is the **approx. model** pdf of AS shock

- $\hat{f}(w) = m \cdot f(w)$ is the **distorted** pdf of AS shock

Results:

1. In baseline log-linear model: $\hat{f}(w) = N(\mu_t, 1)$
The key: figure out Distorted Probabilities

Notation:

- $f(w)$ is the **approx. model** pdf of AS shock
- $\hat{f}(w) = m \cdot f(w)$ is the **distorted** pdf of AS shock

Results:

1. In baseline log-linear model: $\hat{f}(w) = N(\mu_t, 1)$
 - Conditional Mean is **time-varying**
The key: figure out Distorted Probabilities

Notation:

- $f(w)$ is the **approx. model** pdf of AS shock
 \[f(w) = N(0, 1) \]

- $\hat{f}(w) = m \cdot f(w)$ is the **distorted** pdf of AS shock
 \[\hat{f}(w) = ? \]

Results:

1. In baseline log-linear model: $\hat{f}(w) = N(\mu_t, 1)$
 - Conditional Mean **is** time-varying
 - Conditional Variance **is not** time-varying
The key: figure out Distorted Probabilities

Notation:

- $f(w)$ is the **approx. model** pdf of AS shock

- $\hat{f}(w) = m \cdot f(w)$ is the **distorted** pdf of AS shock

Results:

1. In baseline log-linear model: $\hat{f}(w) = N(\mu_t, 1)$
 - Conditional Mean **is** time-varying
 - Conditional Variance **is not** time-varying

2. In quadratic model: $\hat{f}(w) = N(\mu_t + \nu_t, \sigma_t)$
The key: figure out Distorted Probabilities

Notation:

- $f(w)$ is the **approx. model** pdf of AS shock
 \[f(w) = N(0, 1) \]

- $\hat{f}(w) = m \cdot f(w)$ is the **distorted** pdf of AS shock
 \[\hat{f}(w) = ? \]

Results:

1. In baseline log-linear model: $\hat{f}(w) = N(\mu_t, 1)$
 - Conditional Mean **is** time-varying
 - Conditional Variance **is not** time-varying

2. In quadratic model: $\hat{f}(w) = N(\mu_t + \nu_t, \sigma_t)$
 - Conditional Mean **is** time-varying
The key: figure out Distorted Probabilities

Notation:

- \(f(w) \) is the **approx. model** pdf of AS shock
- \(\hat{f}(w) = m \cdot f(w) \) is the **distorted** pdf of AS shock

Results:

1. In baseline log-linear model: \(\hat{f}(w) = N(\mu_t, 1) \)
 - Conditional Mean **is** time-varying
 - Conditional Variance **is not** time-varying

2. In quadratic model: \(\hat{f}(w) = N(\mu_t + \nu_t, \sigma_t) \)
 - Conditional Mean **is** time-varying
 - Conditional Variance **is** time-varying
I’ll spare you the details...

- Focus on linear policies: \(\pi_{t+1} = p_{0,t} + p_{1,t}w_{t+1} \).
- Distortion is of the form: \(\log m_{t+1} = c_t + \phi_{2,t} (\pi_{t+1} + \alpha \pi_{t+1}^2) \).
- Imposing the constraint \(0 = \log E_t m_{t+1} \), implies that \(c_t = -\phi_{2,t} (1 + \alpha p_{0,t}) p_{0,t} + \frac{1}{2} \log \left(1 - 2\phi_{2,t} \alpha p_{1,t}^2 \right) - \frac{1}{2} \phi_{2,t}^2 (1 + 2\alpha p_{0,t})^2 p_{1,t}^2 \left(1 - 2\phi_{2,t} \alpha p_{1,t}^2 \right) \).
- Distorted beliefs are:
 \[
 \log \hat{f}(w) = \log m(w) + \log f(w) \\
 = -\frac{1}{2} \log 2\pi + \frac{1}{2} \log \left(1 - 2\phi_{2,t} \alpha p_{1,t}^2 \right) \\
 - \frac{1}{2} \left(1 - 2\phi_{2,t} \alpha p_{1,t}^2 \right) \left\{ w^2 - 2\frac{\phi_{2,t} p_{1,t} (1 + 2\alpha p_{0,t})}{\left(1 - 2\phi_{2,t} \alpha p_{1,t}^2 \right)} + \phi_{2,t}^2 p_{1,t}^2 \left(1 + 2\alpha p_{0,t} \right)^2 \right\} \\
 \]
- Re-scaling: \(\hat{f}(w) = N \left(\frac{\phi_{2,t} p_{1,t} (1 + 2\alpha p_{0,t})}{\left(1 - 2\phi_{2,t} \alpha p_{1,t}^2 \right)}, \sqrt{1 - 2\phi_{2,t} \alpha p_{1,t}^2} \right) \), where
 \[
 \mu_t + \nu_t = \frac{\phi_{2,t} p_{1,t} (1 + 2\alpha p_{0,t})}{\left(1 - 2\phi_{2,t} \alpha p_{1,t}^2 \right)} \text{ and } \sigma_t = \sqrt{1 - 2\phi_{2,t} \alpha p_{1,t}^2}.
 \]
Conditional variance is distorted: who cares?

- Think about where these distorted probabilities show up.
Conditional variance is distorted: who cares?

- Think about where these distorted probabilities show up.
- Euler equations

\[
E_t \left[m_{t+1} \frac{u'(c_{t+1})}{u'(c_t)} \frac{R_{t+1}}{SDF_{t+1}} \right] = 1
\]
Conditional variance is distorted: who cares?

- Think about where these distorted probabilities show up.

- Euler equations

\[
E_t \begin{bmatrix}
 m_{t+1} \frac{u'(c_{t+1})}{u'(c_t)} R_{t+1} \\
 SDF_{t+1}
\end{bmatrix} = 1
\]

- The Stochastic Discount Factor is of the form:

\[
SDF_{t+1} = A + B \cdot \mu_t + C \cdot \sigma_t \cdot \epsilon_{t+1}
\]
Conditional variance is distorted: who cares?

- Think about where these distorted probabilities show up.
- Euler equations

\[
E_t \begin{bmatrix}
 m_{t+1} \\ \\
 \frac{u'(c_{t+1})}{u'(c_t)} \\ \\
 SDF_{t+1}
\end{bmatrix} R_{t+1} = 1
\]

- The Stochastic Discount Factor is of the form:

\[
SDF_{t+1} = A + B \cdot \mu_t + C \cdot \sigma_t \cdot \varepsilon_{t+1}
\]

- Optimal monetary policy introduces time-variation in the conditional variance of the stochastic discount factor.
Conditional variance is distorted: who cares?

- Think about where these distorted probabilities show up.

- Euler equations

\[
E_t \left[m_{t+1} \frac{u'(c_{t+1})}{u'(c_t)} R_{t+1} \right] = 1
\]

- The Stochastic Discount Factor is of the form:

\[
SDF_{t+1} = A + B \cdot \mu_t + C \cdot \sigma_t \cdot \epsilon_{t+1}
\]

- Optimal monetary policy introduces time-variation in the conditional variance of the stochastic discount factor.

- The CB contributes to creating time-varying equity risk premia!
Great paper, great effort!

I think that there is more than you bargained for, if you take seriously non-linearities!

The link between optimal monetary policy and time-varying expected returns is important and very actual!

This channel is already built into the model: is it quantitatively important?