Risk Sharing for the Long-Run

A General Equilibrium Approach to International Finance with Recursive Preferences and Long-Run Risks

Riccardo Colacito and Mariano Max Croce

Finance Cavalcade, University of Michigan, 5/2011
Motivation

We would like to explain:

1. The forward premium anomaly: the tendency of high interest rate currencies to appreciate

2. The Backus and Smith anomaly: the lack of correlation between consumption differentials and FX movements
Motivation

We would like to explain:

1. **The forward premium anomaly**: the tendency of high interest rate currencies to appreciate

2. **The Backus and Smith anomaly**: the lack of correlation between consumption differentials and FX movements

A general equilibrium model: quantities (consumption, NX, ...) and prices (assets’ returns, FX, ...) are outcome of utility maximization problem
Motivation

- We would like to explain:
 1. The forward premium anomaly: the tendency of high interest rate currencies to appreciate
 2. The Backus and Smith anomaly: the lack of correlation between consumption differentials and FX movements

- A general equilibrium model: quantities (consumption, NX,...) and prices (assets’ returns, FX,...) are outcome of utility maximization problem

- The model should be consistent with:
 - low int’l correlation of consumption and output
 - smoothness of exchange rates
 - large int’l equity risk premia
 - large int’l correlation of returns
 - volatility of Net Exports
 - ...
Roadmap of the talk

1. Setup of the model
 - Preferences
 - Endowments

2. Market structures
 - Complete Markets
 - Portfolio Autarky

3. Calibration

4. Results
Preferences

Two countries: home \((h)\) and foreign \((f)\)

Agents have risk-sensitive preferences

\[
U_{i,t} = (1 - \delta) \log C_{i,t} + \delta \theta \log E_t \exp \left\{ \frac{U_{i,t+1}}{\theta} \right\}, \quad \forall i \in \{h, f\}
\]

where \(\theta = 1/(1 - \gamma)\).
Preferences

- Two countries: home \((h)\) and foreign \((f)\)
- Agents have risk-sensitive preferences

\[
U_{i,t} = (1 - \delta) \log C_{i,t} + \delta E_t[U_{i,t+1}], \quad \forall i \in \{h, f\}
\]

where \(\theta = 1 / (1 - \gamma)\). If \(\theta \to -\infty\): time additive case.
Preferences

- Two countries: home \((h)\) and foreign \((f)\)

- Agents have risk-sensitive preferences

\[
U_{i,t} = (1 - \delta) \log C_{i,t} + \delta \theta \log E_t \exp \left\{ \frac{U_{i,t+1}}{\theta} \right\}, \quad \forall i \in \{h, f\}
\]

where \(\theta = 1 / (1 - \gamma)\).
Preferences

- Two countries: home \((h)\) and foreign \((f)\)

- Agents have risk-sensitive preferences

\[
U_{i,t} \approx (1 - \delta) \log C_{i,t} + \delta E_t[U_{i,t+1}] + \frac{\delta}{2\theta} V_t[U_{i,t+1}], \quad \forall i \in \{h, f\}
\]

where \(\theta = 1/(1 - \gamma)\). Conditional Variance matters.
Preferences

- Two countries: home \((h)\) and foreign \((f)\)

- Agents have risk-sensitive preferences

\[
U_{i,t} = (1 - \delta) \log C_{i,t} + \delta \theta \log E_t \exp \left\{ \frac{U_{i,t+1}}{\theta} \right\}, \quad \forall i \in \{h, f\}
\]

where \(\theta = 1 / (1 - \gamma)\).
Preferences

- Two countries: home \((h)\) and foreign \((f)\)
- Agents have risk-sensitive preferences

\[
U_{i,t} = (1 - \delta) \log C_{i,t} + \delta \theta \log E_t \exp \left\{ \frac{U_{i,t+1}}{\theta} \right\}, \quad \forall i \in \{h, f\}
\]

where \(\theta = 1/(1 - \gamma)\).

- Preferences are defined over the consumption aggregate

\[
C_{h,t} = (x_{h,t})^\alpha (y_{h,t})^{1-\alpha} \quad \text{and} \quad C_{f,t} = (x_{f,t})^{1-\alpha} (y_{f,t})^\alpha
\]
Preferences

- Two countries: home (h) and foreign (f)
- Agents have risk-sensitive preferences

$$U_{i,t} = (1 - \delta) \log C_{i,t} + \delta \theta \log E_t \exp \left\{ \frac{U_{i,t+1}}{\theta} \right\}, \quad \forall i \in \{h, f\}$$

where $\theta = 1 / (1 - \gamma)$.

- Preferences are defined over the consumption aggregate

$$C_{h,t} = (x_{h,t})^{\alpha} (y_{h,t})^{1-\alpha} \quad \text{and} \quad C_{f,t} = (x_{f,t})^{1-\alpha} (y_{f,t})^{\alpha}$$

- Consumption bias: $\alpha > 1/2$.

Endowments’ growth is *almost* i.i.d.

\[
\Delta \log X_t = \mu_x + z_{1,t-1} + \varepsilon_{x,t}
\]
\[
\Delta \log Y_t = \mu_y + z_{2,t-1} + \varepsilon_{y,t}
\]

where \(z_{1,t} \) and \(z_{2,t} \) are small, predictable components

\[
z_{1,t} = \rho_1 z_{1,t-1} + \varepsilon_{1,t}
\]
\[
z_{2,t} = \rho_2 z_{2,t-1} + \varepsilon_{2,t}
\]

- Shocks are homoskedastic.
Markets

- *Home* is endowed with good X;
- *Foreign* is endowed with good Y;
- Complete set of one period ahead state contingent securities;
- Budget constraints:

 $$x_{h,t} + p_t y_{h,t} + \sum_{s_{t+1}} Q_{t+1}(s_{t+1}) A_{t+1}(s_{t+1}) \leq X_t + A_t \quad [\text{Home}]$$

 $$x_{f,t} + p_t y_{f,t} - \sum_{s_{t+1}} Q_{t+1}(s_{t+1}) A_{t+1}(s_{t+1}) \leq p_t Y_t - p_t A_t \quad [\text{Foreign}]$$
Markets

- *Home* is endowed with good X;
- *Foreign* is endowed with good Y;
- Complete set of one period ahead state contingent securities;
- Budget constraints:

$$x_{h,t} + p_t y_{h,t} + \sum_{s_{t+1}} Q_{t+1}(s_{t+1})A_{t+1}(s_{t+1}) \leq X_t + A_t \quad [\text{Home}]$$

$$x_{f,t} + p_t y_{f,t} - \sum_{s_{t+1}} Q_{t+1}(s_{t+1})A_{t+1}(s_{t+1}) \leq p_t Y_t - p_t A_t \quad [\text{Foreign}]$$

- We shall solve the Pareto problem first...
Planner’s problem

Efficient allocations are the solution to the planner’s problem

choose \(\{x_{h,t}, x_{f,t}, y_{h,t}, y_{f,t}\}_{t=0}^{+\infty} \)

to max \(Q = \mu_h U_{h,0} + \mu_f U_{f,0} \)

s.t. \(x_{h,t} + x_{f,t} = X_t \)

\(y_{h,t} + y_{f,t} = Y_t, \quad \forall t \geq 0 \)
Planner’s problem

Efficient allocations are the solution to the planner’s problem

\[
\text{choose} \quad \{x_{h,t}, x_{f,t}, y_{h,t}, y_{f,t}\}_{t=0}^{\infty}
\]

\text{to max} \quad Q = \mu_h U_{h,0} + \mu_f U_{f,0}

\text{s.t.} \quad x_{h,t} + x_{f,t} = X_t
\]

\[
y_{h,t} + y_{f,t} = Y_t, \quad \forall t \geq 0
\]

- \(\mu_h\) and \(\mu_f\) correspond to an initial distribution of assets.
- Notation: \(S = \mu_h / \mu_f\).
Allocations

Time Additive Preferences

Let $k = \frac{\alpha}{1-\alpha}$:

\[
\begin{align*}
 x_t^h &= \frac{kS}{1 + kS} X_t, \\
 y_t^h &= \frac{S}{k + S} Y_t,
\end{align*}
\[
\begin{align*}
 x_t^f &= \frac{1}{1 + kS} X_t, \\
 y_t^f &= \frac{k}{k + S} Y_t
\end{align*}
\]

where

\[
S = \frac{\mu_h}{\mu_f}
\]
Risk Sensitive Preferences

Let \(k = \frac{\alpha}{1 - \alpha} \):

\[
\begin{align*}
 x^h_t &= \frac{kS_t}{1 + kS_t} X_t, & x^f_t &= \frac{1}{1 + kS_t} X_t \\
 y^h_t &= \frac{S_t}{k + S_t} Y_t, & y^f_t &= \frac{k}{k + S_t} Y_t
\end{align*}
\]

where

\[
S_t = S_{t-1} \cdot \frac{\delta \exp \{ U_{h,t}/\theta \}}{E_{t-1} \exp \{ U_{h,t}/\theta \}} \bigg/ \frac{\delta \exp \{ U_{f,t}/\theta \}}{E_{t-1} \exp \{ U_{f,t}/\theta \}}
\]
Economic Interpretation

1. What is S_t?

2. How does S_t move?

3. Why does S_t move?
Economic Interpretation

1. What is S_t?
 - S_t indexes the relative share of consumption at date t.

2. How does S_t move?

3. Why does S_t move?
Economic Interpretation

1. What is S_t?
 - S_t indexes the relative share of consumption at date t.
 - I.e. when $S_t \downarrow$, home is decreasing its share of world consumption.

2. How does S_t move?

3. Why does S_t move?
Economic Interpretation

1. What is S_t?
 - S_t indexes the relative share of consumption at date t.
 - I.e. when $S_t \downarrow$, home is decreasing its share of world consumption.
 - $S_t \downarrow$ means that the home country is exporting more.

2. How does S_t move?

3. Why does S_t move?
Economic Interpretation

What is S_t?
- S_t indexes the relative share of consumption at date t.
- i.e. when $S_t \downarrow$, home is decreasing its share of world consumption.
- $S_t \downarrow$ means that the home country is exporting more.

How does S_t move?
- $S_t \downarrow$, when home receives good (short- or long-run) news.

Why does S_t move?
What is S_t?

- S_t indexes the relative share of consumption at date t.
- I.e. when $S_t \downarrow$, home is decreasing its share of world consumption.
- $S_t \downarrow$ means that the home country is exporting more.

How does S_t move?

- $S_t \downarrow$, when home receives good (short- or long-run) news.
- Equivalently, countries export more in good times.

Why does S_t move?
Why does S_t move?
Why does S_t move?

Reducing Expected Utility

Reducing Volatility

$\gamma = 25$
Why does S_t move?

Reducing Expected Utility

Reducing Volatility

$\gamma = 25$
Why does S_t move?

Trade-off between Expected Utility and Utility Variance
Why does S_t move?

\[
\sigma[U_{h,t+1}(s_{t+1}|s_t)]
\]

$\gamma=1$ (Time Additive Case – No Tradeoff)

$\gamma=25$
Economic Interpretation

1. What is S_t?
 - S_t indexes the relative share of consumption at date t.
 - I.e. when $S_t \downarrow$, home is decreasing its share of world consumption.
 - $S_t \downarrow$ means that the home country is exporting more.

2. How does S_t move?
 - $S_t \downarrow$, when home receives good (short- or long-run) news.
 - Equivalently, countries export more in good times.

3. Why does S_t move?

Economic Interpretation

1. What is S_t?
 - S_t indexes the relative share of consumption at date t.
 - I.e. when $S_t \downarrow$, home is decreasing its share of world consumption.
 - $S_t \downarrow$ means that the home country is exporting more.

2. How does S_t move?
 - $S_t \downarrow$, when home receives good (short- or long-run) news.
 - Equivalently, countries export more in good times.

3. Why does S_t move?
 - Agents are willing to trade-off lower consumption today for smoother future utility profiles.
Economic Interpretation

1. What is S_t?
 - S_t indexes the relative share of consumption at date t.
 - I.e. when $S_t \downarrow$, home is decreasing its share of world consumption.
 - $S_t \downarrow$ means that the home country is exporting more.

2. How does S_t move?
 - $S_t \downarrow$, when home receives good (short- or long-run) news.
 - Equivalently, countries export more in good times.

3. Why does S_t move?
 - Agents are willing to trade-off lower consumption today for smoother future utility profiles.
 - Volatilities are high in bad times and low in good time.
Consumption growth

Time Additive Preferences

\[
\Delta c_t^h = \alpha \Delta x_t + (1 - \alpha) \Delta y_t
\]

\[
\Delta c_t^f = (1 - \alpha) \Delta x_t + \alpha \Delta y_t
\]
Consumption growth

Risk Sensitive Preferences

\[
\Delta c^h_t = \Delta c^{h, TA}_t + \lambda^h c s_{t-1} + \sigma^h_t \varepsilon_t \\
\Delta c^f_t = \Delta c^{f, TA}_t + \lambda^f c s_{t-1} + \sigma^f_t \varepsilon_t
\]
Consumption growth

Risk Sensitive Preferences

\[\Delta c_h^t = \Delta c_h^{t, TA} + \lambda^h c_s t-1 + \sigma^h_1 g(\varepsilon_1, t, \varepsilon_2, t, \varepsilon_x, t, \varepsilon_y, t) \]

\[\Delta c_f^t = \Delta c_f^{t, TA} + \lambda^f c_s t-1 + \sigma^f t g(\varepsilon_1, t, \varepsilon_2, t, \varepsilon_x, t, \varepsilon_y, t) \]

Additional endogenous predictive component
Consumption growth

Risk Sensitive Preferences

\[
\Delta c^h_t = \Delta c^{h,TA}_t + \lambda^h c_{s-1} + \sigma^h_t g(\varepsilon_1, t, \varepsilon_2, t, \varepsilon_x, t, \varepsilon_y, t)
\]

\[
\Delta c^f_t = \Delta c^{f,TA}_t + \lambda^f c_{s-1} + \sigma^f_t g(\varepsilon_1, t, \varepsilon_2, t, \varepsilon_x, t, \varepsilon_y, t)
\]

1. Additional endogenous predictive component
2. Contemporaneous response to long-run shocks
Consumption growth

Risk Sensitive Preferences

\[\Delta c^h_t = \Delta c^h_{t,TA} + \lambda^h_c s_{t-1} + \sigma^h_1 g(\varepsilon_{1,t}, \varepsilon_{2,t}, \varepsilon_{x,t}, \varepsilon_{y,t}) \]

\[\Delta c^f_t = \Delta c^f_{t,TA} + \lambda^f_c s_{t-1} + \sigma^f_1 g(\varepsilon_{1,t}, \varepsilon_{2,t}, \varepsilon_{x,t}, \varepsilon_{y,t}) \]

1. Additional endogenous predictive component
2. Contemporaneous response to long-run shocks
3. Endogenous time-varying volatility
Exchange rates are functions of relative supplies of the two goods.
Exchange rates are functions of relative supplies of the two goods

- Both current

\[\Delta e_t = f \left(\begin{pmatrix} \varepsilon_{x,t} - \varepsilon_{y,t} \\ <0 \end{pmatrix} \right) \]
Exchange rates are functions of relative supplies of the two goods

- Both current and future

\[\Delta e_t = f \left(\varepsilon_{x,t} - \varepsilon_{y,t}, \varepsilon_{1,t} - \varepsilon_{2,t} \right) \]

where \(\varepsilon_{x,t} \) and \(\varepsilon_{y,t} \) are the supplies of goods X and Y respectively at time t, and \(\varepsilon_{1,t} \) and \(\varepsilon_{2,t} \) are the supplies of goods 1 and 2 respectively at time t. The function f indicates that the exchange rate \(\Delta e_t \) depends on the differences in these supplies.
Exchange rates are functions of relative supplies of the two goods

- Both current and future

\[
\Delta e_t = f \left(\begin{array}{c}
\varepsilon_{x,t} - \varepsilon_{y,t}, \\
<0
\end{array} \right) \left(\begin{array}{c}
\varepsilon_{1,t} - \varepsilon_{2,t}, \\
<<0
\end{array} \right)
\]

- Agents are extremely sensitive to long-run news
Exchange rates are functions of relative supplies of the two goods

- Both current and future

\[\Delta e_t = f \left(\varepsilon_{x,t} - \varepsilon_{y,t}, \varepsilon_{1,t} - \varepsilon_{2,t} \right) \]

- Agents are extremely sensitive to long-run news
- Long-run risks should be very correlated to replicate FX volatility
The Backus and Smith Anomaly
The Backus and Smith Anomaly

The quest for $corr(\Delta c^h - \Delta c^f, \Delta e) \approx 0$
The Backus and Smith Anomaly

The quest for \(\text{corr}(\Delta c^h - \Delta c^f, \Delta e) \approx 0 \)
The Backus and Smith Anomaly

The quest for \(\text{corr}(\Delta c^h - \Delta c^f, \Delta e) \approx 0 \)

→ Short-run shock to \(X \): home country is happy!
The Backus and Smith Anomaly

The quest for $\text{corr}(\Delta c^h - \Delta c^f, \Delta e) \approx 0$

→ Home increases consumption more than foreign.
The Backus and Smith Anomaly

The quest for $corr(\Delta c^h - \Delta c^f, \Delta e) \approx 0$

\rightarrow Home increases consumption more than foreign.
The quest for $\text{corr}(\Delta c^h - \Delta c^f, \Delta e) \approx 0$

→ Home increases consumption more than foreign.
The Backus and Smith Anomaly

The quest for \(\text{corr}(\Delta c^h - \Delta c^f, \Delta e) \approx 0 \)

→ Home currency depreciates
The Backus and Smith Anomaly

The quest for $\text{corr}(\Delta c^h - \Delta c^f, \Delta e) \approx 0$

\rightarrow Home currency depreciates: $\text{corr}(\Delta c^h - \Delta c^f, \Delta e)$ is positive
The Backus and Smith Anomaly

The quest for \(\text{corr}(\Delta c^h - \Delta c^f, \Delta e) \approx 0 \)

→ Long-run shock to \(X \): home country is very happy!
The Backus and Smith Anomaly

The quest for $corr(\Delta c^h - \Delta c^f, \Delta e) \approx 0$

→ Long-run shock to X: home country is very happy!
The Backus and Smith Anomaly

The quest for \(\text{corr}(\Delta c^h - \Delta c^f, \Delta e) \approx 0 \)

→ Home consumption falls to restore equilibrium.
The Backus and Smith Anomaly

The quest for $\text{corr}(\Delta c^h - \Delta c^f, \Delta e) \approx 0$

→ Home consumption falls to restore equilibrium.
The Backus and Smith Anomaly

The quest for $\text{corr}(\Delta c^h - \Delta c^f, \Delta e) \approx 0$

\rightarrow Home consumption falls to restore equilibrium.
The Backus and Smith Anomaly

The quest for \(corr(\Delta c^h - \Delta c^f, \Delta e) \approx 0 \)

\[\Delta c^h - \Delta c^f \rightarrow \text{Home currency depreciates} \]
The quest for $\text{corr}(\Delta c^h - \Delta c^f, \Delta e) \approx 0$

→ Home currency depreciates: $\text{corr}(\Delta c^h - \Delta c^f, \Delta e)$ is negative
The Backus and Smith Anomaly

The quest for $\text{corr}(\Delta c^h - \Delta c^f, \Delta e) \approx 0$

Short–Run Shock

Long–Run Shock

$\Delta c^h - \Delta c^f$

$\Delta c^h - \Delta c^f$
The quest for $corr(\Delta c^h - \Delta c^f, \Delta e) \approx 0$
Forward Premium Anomaly
Forward Premium Anomaly

Why do high interest rate currency have the tendency to appreciate?
Forward Premium Anomaly

Why do high interest rate currency have the tendency to appreciate?

Interest rate differential

\[\uparrow r_{t-1}^h - r_{t-1}^f \approx \uparrow E_{t-1} \left[\Delta c_t^h - \Delta c_t^f \right] + \frac{1}{2} \left(V_{t-1} \left[\Delta c_t^f \right] - V_{t-1} \left[\Delta c_t^h \right] \right) \]
Forward Premium Anomaly

Why do high interest rate currency have the tendency to appreciate?

Interest rate differential

\[\uparrow r^h_{t-1} - r^f_{t-1} \approx \uparrow E_{t-1} [\Delta c^h_t - \Delta c^f_t] + \frac{1}{2} (V_{t-1} [\Delta c^f_t] - V_{t-1} [\Delta c^h_t]) \uparrow \]

Expected FX growth

\[\uparrow \downarrow E_{t-1} [\Delta e_t] = \uparrow E_{t-1} [\Delta c^h_t - \Delta c^f_t] + \frac{1}{2\theta^2} (Var_{t-1} [U^h_t] - Var_{t-1} [U^f_t]) \downarrow \]
Forward Premium Anomaly

Why do high interest rate currency have the tendency to appreciate?

Interest rate differential

\[\uparrow r_{t-1}^h - r_{t-1}^f \approx \uparrow E_{t-1} [\Delta c_t^h - \Delta c_t^f] + \frac{1}{2} (V_{t-1} [\Delta c_t^f] - V_{t-1} [\Delta c_t^h]) \uparrow \]

Expected FX growth

\[\uparrow \downarrow E_{t-1} [\Delta e_t] = \uparrow E_{t-1} [\Delta c_t^h - \Delta c_t^f] + \frac{1}{2\theta^2} (V_{t-1} [U_t^h] - V_{t-1} [U_t^f]) \downarrow \]

→ Assume that Home has good long-run news (\(\varepsilon_{1,t} \uparrow\))
Forward Premium Anomaly

Why do high interest rate currency have the tendency to appreciate?

Interest rate differential

\[\uparrow r^h_{t-1} - r^f_{t-1} \approx \uparrow E_{t-1} [\Delta c^h_t - \Delta c^f_t] + \frac{1}{2} (V_{t-1} [\Delta c^f_t] - V_{t-1} [\Delta c^h_t]) \uparrow \]

Expected FX growth

\[\updownarrow E_{t-1} [\Delta e_t] = \uparrow E_{t-1} [\Delta c^h_t - \Delta c^f_t] + \frac{1}{2\theta^2} (Var_{t-1} [U^h_t] - Var_{t-1} [U^f_t]) \downarrow \]

→ Assume that Home has good long-run news (\(\varepsilon_{1,t} \uparrow\))
Forward Premium Anomaly

Why do high interest rate currency have the tendency to appreciate?

Interest rate differential

$$\uparrow r^h_{t-1} - r^f_{t-1} \approx \uparrow E_{t-1} [\Delta c^h_t - \Delta c^f_t] + \frac{1}{2} (V_{t-1} [\Delta c^f_t] - V_{t-1} [\Delta c^h_t]) \uparrow$$

Expected FX growth

$$\uparrow \downarrow E_{t-1} [\Delta e_t] = \uparrow E_{t-1} [\Delta c^h_t - \Delta c^f_t] + \frac{1}{2\theta^2} (Var_{t-1} [U^h_t] - Var_{t-1} [U^f_t]) \downarrow$$

→ Assume that Home has good long-run news ($\epsilon_{1,t} \uparrow$)
Forward Premium Anomaly

Why do high interest rate currency have the tendency to appreciate?

Interest rate differential

\[\uparrow r_{t-1}^h - r_{t-1}^f \approx \uparrow E_{t-1} \left[\Delta c_t^h - \Delta c_t^f \right] + \frac{1}{2} \left(V_{t-1} \left[\Delta c_t^f \right] - V_{t-1} \left[\Delta c_t^h \right] \right) \uparrow \]

Expected FX growth

\[\uparrow \downarrow E_{t-1} \left[\Delta e_t \right] = \uparrow E_{t-1} \left[\Delta c_t^h - \Delta c_t^f \right] + \frac{1}{2 \theta^2} \left(Var_{t-1} \left[U_t^h \right] - Var_{t-1} \left[U_t^f \right] \right) \downarrow \]

→ Assume that Home has good long-run news (\(\varepsilon_{1,t} \uparrow \))
Forward Premium Anomaly

Why do high interest rate currency have the tendency to appreciate?

Interest rate differential

\[\uparrow r_{t-1}^h - r_{t-1}^f \approx \uparrow E_{t-1} [\Delta c_t^h - \Delta c_t^f] + \frac{1}{2} (V_{t-1} [\Delta c_t^f] - V_{t-1} [\Delta c_t^h]) \uparrow \]

Expected FX growth

\[\uparrow \downarrow E_{t-1} [\Delta e_t] = \uparrow E_{t-1} [\Delta c_t^h - \Delta c_t^f] + \frac{1}{2\theta^2} (Var_{t-1} [U_t^h] - Var_{t-1} [U_t^f]) \downarrow \]

→ Assume that Home has good long-run news (\(\varepsilon_{1,t} \uparrow\))
Why do high interest rate currency have the tendency to appreciate?

Interest rate differential

\[\uparrow r^h_{t-1} - r^f_{t-1} \approx \uparrow E_{t-1} [\Delta c^h_t - \Delta c^f_t] + \frac{1}{2} \left(V_{t-1} [\Delta c^f_t] - V_{t-1} [\Delta c^h_t] \right) \uparrow \]

Expected FX growth

\[\uparrow\downarrow E_{t-1} [\Delta e_t] = \uparrow E_{t-1} [\Delta c^h_t - \Delta c^f_t] + \frac{1}{2\theta^2} \left(\text{Var}_{t-1} [U^h_t] - \text{Var}_{t-1} [U^f_t] \right) \downarrow \]

→ Assume that Home has good long-run news (\(\varepsilon_{1,t} \uparrow\))
Forward Premium Anomaly

Why do high interest rate currency have the tendency to appreciate?

Interest rate differential

\[\uparrow r_{t-1}^h - r_{t-1}^f \approx \uparrow E_{t-1} [\Delta c_t^h - \Delta c_t^f] + \frac{1}{2} (V_{t-1} [\Delta c_t^f] - V_{t-1} [\Delta c_t^h]) \uparrow \]

Expected FX growth

\[\uparrow \downarrow E_{t-1} [\Delta e_t] = \uparrow E_{t-1} [\Delta c_t^h - \Delta c_t^f] + \frac{1}{2 \theta^2} (Var_{t-1} [U_t^h] - Var_{t-1} [U_t^f]) \downarrow \]

→ Assume that Home has good long-run news \((\epsilon_{1,t} \uparrow)\)
Forward Premium Anomaly

Why do high interest rate currency have the tendency to appreciate?

Interest rate differential

\[\uparrow r^h_{t-1} - r^f_{t-1} \approx \uparrow E_{t-1} [\Delta c^h_t - \Delta c^f_t] + \frac{1}{2} \left(V_{t-1} [\Delta c^f_t] - V_{t-1} [\Delta c^h_t] \right) \uparrow \]

Expected FX growth

\[\downarrow \uparrow E_{t-1} [\Delta e_t] = \uparrow E_{t-1} [\Delta c^h_t - \Delta c^f_t] + \frac{1}{2 \theta^2} \left(Var_{t-1} [U^h_t] - Var_{t-1} [U^f_t] \right) \downarrow \]

\[\rightarrow \text{Assume that Home has good long-run news (} \varepsilon_{1,t} \uparrow \) \]
Why do high interest rate currency have the tendency to appreciate?

Interest rate differential

\[\uparrow r_{t-1}^h - r_{t-1}^f \approx \uparrow E_{t-1} \left[\Delta c_t^h - \Delta c_t^f \right] + \frac{1}{2} \left(V_{t-1} \left[\Delta c_t^f \right] - V_{t-1} \left[\Delta c_t^h \right] \right) \uparrow \]

Expected FX growth

\[\uparrow \downarrow E_{t-1} \left[\Delta e_t \right] = \uparrow E_{t-1} \left[\Delta c_t^h - \Delta c_t^f \right] + \frac{1}{2 \theta^2} \left(Var_{t-1} \left[U_t^h \right] - Var_{t-1} \left[U_t^f \right] \right) \downarrow \]

→ Assume that Home has good long-run news (\(\varepsilon_{1,t} \uparrow \))
Calibration

<table>
<thead>
<tr>
<th></th>
<th>Pre-1970</th>
<th>Post-1970</th>
</tr>
</thead>
<tbody>
<tr>
<td>µ (Mean Output Growth)</td>
<td>0.165%</td>
<td></td>
</tr>
<tr>
<td>σ (Std. Dev. of Idiosyncratic Output Growth)</td>
<td>0.540%</td>
<td></td>
</tr>
<tr>
<td>σx (Std. Dev. of Long-Run Output Growth)</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>α (Degree of Consumption Home Bias)</td>
<td>0.980</td>
<td></td>
</tr>
<tr>
<td>δ (Subjective Discount Factor)</td>
<td>0.998</td>
<td></td>
</tr>
<tr>
<td>γ (Risk Aversion)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>ρ (Persistence of Long-Run Risks)</td>
<td>0.988</td>
<td></td>
</tr>
<tr>
<td>ρ12 (Correlation of Long-Run Risks)</td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>ρxy (Correlation of Short-Run Risks)</td>
<td>-0.5</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Calibration

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Portfolio Autarky</td>
<td></td>
<td>Complete Markets</td>
</tr>
</tbody>
</table>
Calibration

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>Mean Output growth</td>
<td>0.165%</td>
</tr>
<tr>
<td>σ</td>
<td>Std. dev. of idiosyncratic output growth</td>
<td>0.540%</td>
</tr>
<tr>
<td>σ_x</td>
<td>Std. dev. of long-run output growth</td>
<td>4%$ \cdot \sigma$</td>
</tr>
<tr>
<td>α</td>
<td>Degree of consumption home bias</td>
<td>0.980</td>
</tr>
<tr>
<td>δ</td>
<td>Subjective discount factor</td>
<td>0.998</td>
</tr>
<tr>
<td>γ</td>
<td>Risk Aversion</td>
<td>7</td>
</tr>
<tr>
<td>ρ</td>
<td>Persistence of long-run risks</td>
<td>0.988</td>
</tr>
</tbody>
</table>
Calibration

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Output growth</td>
<td>0.165%</td>
<td></td>
</tr>
<tr>
<td>Std. dev. of idiosyncratic output growth</td>
<td>0.540%</td>
<td></td>
</tr>
<tr>
<td>Std. dev. of long-run output growth</td>
<td>4%·σ</td>
<td></td>
</tr>
<tr>
<td>Degree of consumption home bias</td>
<td>0.980</td>
<td></td>
</tr>
<tr>
<td>Subjective discount factor</td>
<td>0.998</td>
<td></td>
</tr>
<tr>
<td>Risk Aversion</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Persistence of long-run risks</td>
<td>0.988</td>
<td></td>
</tr>
<tr>
<td>Correlation of long-run risks</td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>Correlation of short-run risks</td>
<td>-0.5</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Methodology:

- Define GDP as sum of consumption and Net Export
- For each country: regress ΔGDP on lagged Δc, pd, cy
- Use projection as measure of long-run risks
- Apply to US and UK
Using all NX

\[\rho_{12} = 0.46 \]

\[\rho_{12} = 0.70 \]
Long-Run Risks

Using all NX

\[\rho_{12} = 0.46 \]

\[\rho_{12} = 0.70 \]

\[\rho_{12} = 0.89 \]
Long-Run Risks

Using only bilateral NX

\(\rho_{12} = 0.49 \)

\(\rho_{12} = 0.63 \)
Long-Run Risks

→ Using only bilateral NX

\[
\begin{align*}
\rho_{12} &= 0.49 \\
\rho_{12} &= 0.63 \\
\rho_{12} &= 0.83
\end{align*}
\]
Results: quantities

<table>
<thead>
<tr>
<th></th>
<th>Pre-1970</th>
<th></th>
<th>Post-1970</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model</td>
<td>Data</td>
<td>Model</td>
<td>Data</td>
</tr>
<tr>
<td></td>
<td>(Portfolio Autarky)</td>
<td>(US,UK)</td>
<td>(Complete Markets)</td>
<td>(US,UK)</td>
</tr>
<tr>
<td>$Std[\Delta y^h]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ACF_1[\Delta y^h]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Std[\Delta c^h]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ACF_1[\Delta c^h]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$corr[\Delta y_t^h, \Delta y_t^f]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$corr[\Delta c_t^h, \Delta c_t^f]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Std[NX_t^h / Y_t^h]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ACF_1[NX_t^h / Y_t^h]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: quantities

<table>
<thead>
<tr>
<th></th>
<th>Pre-1970</th>
<th>Post-1970</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model</td>
<td>Data</td>
</tr>
<tr>
<td></td>
<td>(Portfolio Autarky)</td>
<td>(US,UK)</td>
</tr>
<tr>
<td>Std[Δy^h]</td>
<td>1.920</td>
<td>2.483</td>
</tr>
<tr>
<td>ACF$_1$[Δy^h]</td>
<td>0.430</td>
<td>0.064</td>
</tr>
<tr>
<td>Std[Δc^h]</td>
<td>1.880</td>
<td>1.405</td>
</tr>
<tr>
<td>ACF$_1$[Δc^h]</td>
<td>0.430</td>
<td>0.283</td>
</tr>
<tr>
<td>corr[$\Delta y^h_t, \Delta y_f^t$]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>corr[$\Delta c^h_t, \Delta c_f^t$]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std[NX^h_t/Y^h]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACF$_1$[NX^h_t/Y^h]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: quantities

<table>
<thead>
<tr>
<th></th>
<th>Pre-1970</th>
<th>Post-1970</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model</td>
<td>Data</td>
</tr>
<tr>
<td></td>
<td>(Portfolio Autarky)</td>
<td>(US,UK)</td>
</tr>
<tr>
<td>Std[Δy^h]</td>
<td>1.920</td>
<td>2.483</td>
</tr>
<tr>
<td>ACF$_1[\Delta y^h]$</td>
<td>0.430</td>
<td>0.064</td>
</tr>
<tr>
<td>Std[Δc^h]</td>
<td>1.880</td>
<td>1.405</td>
</tr>
<tr>
<td>ACF$_1[\Delta c^h]$</td>
<td>0.430</td>
<td>0.283</td>
</tr>
<tr>
<td>corr[Δy^h_t, Δy^f_t]</td>
<td>-0.110</td>
<td>-0.381</td>
</tr>
<tr>
<td>corr[Δc^h_t, Δc^f_t]</td>
<td>-0.070</td>
<td>0.021</td>
</tr>
<tr>
<td>Std[$\Delta N^h / \Delta Y^h$]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACF$_1[\Delta N^h / \Delta Y^h]$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: quantities

<table>
<thead>
<tr>
<th>Pre-1970</th>
<th>Post-1970</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model</td>
</tr>
<tr>
<td></td>
<td>(Portfolio Autarky)</td>
</tr>
<tr>
<td>Std[Δy^h]</td>
<td>1.920</td>
</tr>
<tr>
<td>$ACF_1[\Delta y^h]$</td>
<td>0.430</td>
</tr>
<tr>
<td>Std[Δc^h]</td>
<td>1.880</td>
</tr>
<tr>
<td>$ACF_1[\Delta c^h]$</td>
<td>0.430</td>
</tr>
<tr>
<td>corr[$\Delta y^h_t, \Delta y^f_t$]</td>
<td>-0.110</td>
</tr>
<tr>
<td>corr[$\Delta c^h_t, \Delta c^f_t$]</td>
<td>-0.070</td>
</tr>
<tr>
<td>Std[NX^h/Y^h]</td>
<td>0.000</td>
</tr>
<tr>
<td>$ACF_1[NX^h/Y^h]$</td>
<td>-</td>
</tr>
</tbody>
</table>
Results: quantities

<table>
<thead>
<tr>
<th></th>
<th>Pre-1970</th>
<th>Post-1970</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model</td>
<td>Data</td>
</tr>
<tr>
<td></td>
<td>(Portfolio Autarky)</td>
<td>(US,UK)</td>
</tr>
<tr>
<td>(\text{Std}[\Delta y^h])</td>
<td>1.920</td>
<td>2.483</td>
</tr>
<tr>
<td>(\text{ACF}_1[\Delta y^h])</td>
<td>0.430</td>
<td>0.064</td>
</tr>
<tr>
<td>(\text{Std}[\Delta c^h])</td>
<td>1.880</td>
<td>1.405</td>
</tr>
<tr>
<td>(\text{ACF}_1[\Delta c^h])</td>
<td>0.430</td>
<td>0.283</td>
</tr>
<tr>
<td>(\text{corr}[\Delta y^h_t, \Delta y^f_t])</td>
<td>-0.110</td>
<td>-0.381</td>
</tr>
<tr>
<td>(\text{corr}[\Delta c^h_t, \Delta c^f_t])</td>
<td>-0.070</td>
<td>0.021</td>
</tr>
<tr>
<td>(\text{Std}[NX^h / Y^h])</td>
<td>0.000</td>
<td>1.426</td>
</tr>
<tr>
<td>(\text{ACF}_1[NX^h / Y^h])</td>
<td>-</td>
<td>0.283</td>
</tr>
</tbody>
</table>
Results: prices

<table>
<thead>
<tr>
<th>Pre-1970</th>
<th>Post-1970</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Data</td>
</tr>
<tr>
<td>(Portfolio Autarky)</td>
<td>(US,UK)</td>
</tr>
</tbody>
</table>

- $Std[m^h]$
- $Std[\Delta e]$
- $E[r^h_i]$
- $Std[r^h_i]$
- $corr[r^h_{fi,t}, r^f_{fi,t}]$
- $corr[\Delta c^h_i - \Delta c^f_i, \Delta e_t]$
- β_{UIP}
Results: prices

<table>
<thead>
<tr>
<th></th>
<th>Pre-1970</th>
<th></th>
<th>Post-1970</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model</td>
<td>Data</td>
<td>Model</td>
<td>Data</td>
</tr>
<tr>
<td>(Portfolio Autarky)</td>
<td>(US,UK)</td>
<td>(Complete Markets)</td>
<td>(US,UK)</td>
<td></td>
</tr>
<tr>
<td>Std[m^h]</td>
<td>38.100</td>
<td>-</td>
<td>36.200</td>
<td>-</td>
</tr>
<tr>
<td>Std[Δe]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E[r^h_t]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std[r^h_t]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>corr[$r^h_{f,t}$, $r^f_{f,t}$]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>corr[$\Delta c^h_i - \Delta c^f_i, \Delta e_t$]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{UIP}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: prices

<table>
<thead>
<tr>
<th></th>
<th>Pre-1970</th>
<th>Post-1970</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model (Portfolio Autarky)</td>
<td>Model (Complete Markets)</td>
</tr>
<tr>
<td>Std[m^h]</td>
<td>38.100</td>
<td>36.200</td>
</tr>
<tr>
<td>Std[e]</td>
<td>3.280</td>
<td>4.391</td>
</tr>
<tr>
<td>E[r_f^h]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std[r_f^h]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>corr[r_f^h, r_f^f]</td>
<td>0.500</td>
<td>0.512</td>
</tr>
<tr>
<td>corr[Δc_t^h, Δc_t^f, Δe_t]</td>
<td>-0.190</td>
<td>-0.020</td>
</tr>
<tr>
<td>β_{UIP}</td>
<td>-3.500</td>
<td>-0.980</td>
</tr>
</tbody>
</table>

Results: prices
Results: prices

<table>
<thead>
<tr>
<th></th>
<th>Pre-1970</th>
<th>Post-1970</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model</td>
<td>Data</td>
</tr>
<tr>
<td></td>
<td>(Portfolio Autarky)</td>
<td>(US,UK)</td>
</tr>
<tr>
<td>Std[m^h]</td>
<td>38.100</td>
<td>-</td>
</tr>
<tr>
<td>Std[Δe]</td>
<td>3.280</td>
<td>4.391</td>
</tr>
<tr>
<td>$E[r^h]$</td>
<td>2.710</td>
<td>0.775</td>
</tr>
<tr>
<td>Std[r^h]</td>
<td>1.210</td>
<td>0.884</td>
</tr>
<tr>
<td>corr[$r^h_{f,t}, r^f_{t,t}$]</td>
<td>0.500</td>
<td>0.512</td>
</tr>
<tr>
<td>corr[$\Delta c^h_i - \Delta c^f_i, \Delta e_i$]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{UIP}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: prices

<table>
<thead>
<tr>
<th></th>
<th>Pre-1970</th>
<th></th>
<th>Post-1970</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model (Portfolio Autarky)</td>
<td>Data (US,UK)</td>
<td>Model (Complete Markets)</td>
<td>Data (US,UK)</td>
</tr>
<tr>
<td>$Std[m^h]$</td>
<td>38.100</td>
<td>-</td>
<td>36.200</td>
<td>-</td>
</tr>
<tr>
<td>$E[r_i^h]$</td>
<td>2.710</td>
<td>0.775</td>
<td>2.700</td>
<td>1.295</td>
</tr>
<tr>
<td>$Std[r_i^h]$</td>
<td>1.210</td>
<td>0.884</td>
<td>1.210</td>
<td>1.200</td>
</tr>
<tr>
<td>$corr[r_i^{h,t}, r_i^{f,t}]$</td>
<td>0.500</td>
<td>0.512</td>
<td>0.870</td>
<td>0.672</td>
</tr>
<tr>
<td>$corr[Δc_i^h, Δc_i^f, Δe_t]$</td>
<td>-</td>
<td>-</td>
<td>-0.190</td>
<td>-0.020</td>
</tr>
<tr>
<td>$β_{UIP}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Results: prices

<table>
<thead>
<tr>
<th></th>
<th>Pre-1970</th>
<th>Post-1970</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model</td>
<td>Data</td>
</tr>
<tr>
<td></td>
<td>(Portfolio Autarky)</td>
<td>(US,UK)</td>
</tr>
<tr>
<td>$Std[m^h]$</td>
<td>38.100</td>
<td>-</td>
</tr>
<tr>
<td>$Std[\Delta e]$</td>
<td>3.280</td>
<td>4.391</td>
</tr>
<tr>
<td>$E[r^h]$</td>
<td>2.710</td>
<td>0.775</td>
</tr>
<tr>
<td>$Std[r^h]$</td>
<td>1.210</td>
<td>0.884</td>
</tr>
<tr>
<td>$corr[r^h, r^f]$</td>
<td>0.500</td>
<td>0.512</td>
</tr>
<tr>
<td>$corr[\Delta c^h_i - \Delta c^f_i, \Delta e_i]$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>β_{UIP}</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Results: prices

<table>
<thead>
<tr>
<th></th>
<th>Pre-1970</th>
<th>Post-1970</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model</td>
<td>Data</td>
</tr>
<tr>
<td></td>
<td>(Portfolio Autarky)</td>
<td>(US,UK)</td>
</tr>
<tr>
<td><code>Std[m^h]</code></td>
<td>38.100</td>
<td>-</td>
</tr>
<tr>
<td><code>E[r^h_i]</code></td>
<td>2.710</td>
<td>0.775</td>
</tr>
<tr>
<td><code>Std[r^h_i]</code></td>
<td>1.210</td>
<td>0.884</td>
</tr>
<tr>
<td><code>corr[r^h_i, r^f_i]</code></td>
<td>0.500</td>
<td>0.512</td>
</tr>
<tr>
<td><code>corr[Δc^h_i - Δc^f_i, Δe_i]</code></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td><code>β_{UIP}</code></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Epstein and Zin Preferences

- Risk Sensitive preferences are a special case of Epstein and Zin preferences.
- What happens when the elasticity of intertemporal substitution is different from 1?
- Main results are confirmed, larger equity risk premium...
Epstein and Zin Preferences: Results

<table>
<thead>
<tr>
<th>ψ</th>
<th>1.5</th>
<th>1</th>
<th>0.66</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>$Std(\Delta e)$</td>
<td>18.02</td>
<td>18.14</td>
<td>27.57</td>
</tr>
<tr>
<td>$E[r_c - r_f]$</td>
<td>3.24</td>
<td>0.28</td>
<td>-1.27</td>
</tr>
<tr>
<td>$E[r_f]$</td>
<td>1.48</td>
<td>3.6</td>
<td>5.27</td>
</tr>
<tr>
<td>$Std(r_f)$</td>
<td>0.85</td>
<td>1.47</td>
<td>2.06</td>
</tr>
<tr>
<td>$corr(r_f^h, r_f^f)$</td>
<td>0.86</td>
<td>0.93</td>
<td>0.95</td>
</tr>
<tr>
<td>$corr(\Delta c^h - \Delta c^f, \Delta e)$</td>
<td>-0.13</td>
<td>0</td>
<td>0.63</td>
</tr>
<tr>
<td>β_{UIP}</td>
<td>-2.56</td>
<td>-2.65</td>
<td>-3.29</td>
</tr>
</tbody>
</table>
Concluding Remarks

A two-countries model with:

- complete markets
- two goods
- long-run risks in the endowments
- recursive preferences

1. generates
 - dynamic risk-sharing scheme
 - endogenously time varying second moments

2. replicates a number of international finance facts

3. introduce frictions and investments