A Sentiment-based Explanation of the Forward Premium Puzzle: discussion

Riccardo Colacito

WFA Meetings, Santa Fe, 6/2011
Motivation

- UIP: high interest rate currencies should depreciate.
Motivation

- UIP: high interest rate currencies should depreciate.

- However, typically $\beta << 1$ in the regression

$$\Delta e_{t+1} = \beta (r_t - r_t^*) + \varepsilon_{t+1}$$

This paper provides a theoretical framework to explain $\beta << 1$; provides empirical evidence to support this theory.
Motivation

- UIP: high interest rate currencies should depreciate.

- However, typically $\beta << 1$ in the regression

$$\Delta e_{t+1} = \beta (r_t - r_t^*) + \varepsilon_{t+1}$$

- This paper
 - provide theoretical framework to explain $\beta << 1$;
 - provide empirical evidence to support this theory.
Main idea with log-preferences.

Sentiment vs Long-Run Risks?

Alternative interpretation of the model.

Empirical evidence: Should we worry about sentiment spread?
Main idea with log-preferences
Main idea with log-preferences

- Stochastic Discount Factors: $m_{t+1} \propto -\Delta c_{t+1}$
Main idea with log-preferences

- Stochastic Discount Factors: $m_{t+1} \propto -\Delta c_{t+1}$

- Risk-free rates: $r_t = \bar{r} + E_t [\Delta c_{t+1}]$

- Exchange Rates: $\Delta e_{t+1} = \Delta c_{t+1} - \Delta c^*_{t+1}$
Main idea with log-preferences

- Stochastic Discount Factors: $m_{t+1} \propto -\Delta c_{t+1}$

- Risk-free rates: $r_t - r_t^* = E_t [\Delta c_{t+1}] - E_t [\Delta c_{t+1}^*]$

- Exchange Rates: $\Delta e_{t+1} = \Delta c_{t+1} - \Delta c_{t+1}^*$
Main idea with log-preferences

- **Stochastic Discount Factors:** $m_{t+1} \propto -\Delta c_{t+1}$
 - Agents’ beliefs: $\Delta c_{t+1} = s_t + \varepsilon_{t+1}$

- **Risk-free rates:** $r_t - r_t^* = E_t [\Delta c_{t+1}] - E_t [\Delta c_{t+1}^*]$

- **Exchange Rates:** $\Delta e_{t+1} = \Delta c_{t+1} - \Delta c_{t+1}^*$
Main idea with log-preferences

- Stochastic Discount Factors: $m_{t+1} \propto -\Delta c_{t+1}$
 - Agents’ beliefs: $E_t[\Delta c_{t+1}] = s_t$

- Risk-free rates: $r_t - r^*_t = E_t[\Delta c_{t+1}] - E_t[\Delta c^*_{t+1}]$

- Exchange Rates: $\Delta e_{t+1} = \Delta c_{t+1} - \Delta c^*_{t+1}$
Main idea with log-preferences

- Stochastic Discount Factors: $m_{t+1} \propto -\Delta c_{t+1}$
 - Agents' beliefs: $E_t[\Delta c_{t+1}] = s_t$

- Risk-free rates: $r_t - r_t^* = E_t[\Delta c_{t+1}] - E_t[\Delta c_{t+1}^*]$
 - Agents' beliefs: $r_t - r_t^* = (s_t - s_t^*)$

- Exchange Rates: $\Delta e_{t+1} = \Delta c_{t+1} - \Delta c_{t+1}^*$
Main idea with log-preferences

- **Stochastic Discount Factors:** \(m_{t+1} \propto -\Delta c_{t+1} \)
 - Agents' beliefs: \(E_t[\Delta c_{t+1}] = s_t \)

- **Risk-free rates:** \(r_t - r^*_t = E_t[\Delta c_{t+1}] - E_t[\Delta c^*_{t+1}] \)
 - Agents' beliefs: \(r_t - r^*_t = (s_t - s^*_t) \)

- **Exchange Rates:** \(\Delta e_{t+1} = \Delta c_{t+1} - \Delta c^*_{t+1} \)
 - Agents' beliefs: \(E_t[\Delta e_{t+1}] = (s_t - s^*_t) \)
Main idea with log-preferences

- **Stochastic Discount Factors:** \(m_{t+1} \propto -\Delta c_{t+1} \)
 - Agents' beliefs: \(E_t[\Delta c_{t+1}] = s_t \)

- **Risk-free rates:** \(r_t - r_t^* = E_t[\Delta c_{t+1}] - E_t[\Delta c_{t+1}^*] \)
 - Agents' beliefs: \(r_t - r_t^* = (s_t - s_t^*) \)

- **Exchange Rates:** \(\Delta e_{t+1} = \Delta c_{t+1} - \Delta c_{t+1}^* \)
 - Agents' beliefs: \(E_t[\Delta e_{t+1}] = (s_t - s_t^*) \)

Ex ante UIP regression slope equals 1
Main idea with log-preferences

- Stochastic Discount Factors: $m_{t+1} \propto -\Delta c_{t+1}$
 - Agents' beliefs: $E_t[\Delta c_{t+1}] = s_t$
 - Nature: $\Delta c_{t+1} = \epsilon_{t+1}$

- Risk-free rates: $r_t - r^*_t = E_t[\Delta c_{t+1}] - E_t[\Delta c^*_{t+1}]$
 - Agents' beliefs: $r_t - r^*_t = (s_t - s^*_t)$

- Exchange Rates: $\Delta e_{t+1} = \Delta c_{t+1} - \Delta c^*_{t+1}$
 - Agents' beliefs: $E_t[\Delta e_{t+1}] = (s_t - s^*_t)$
Main idea with log-preferences

- **Stochastic Discount Factors:** $m_{t+1} \propto -\Delta c_{t+1}$
 - Agents' beliefs: $E_t[\Delta c_{t+1}] = s_t$
 - Nature: $\Delta c_{t+1} = \epsilon_{t+1}$

- **Risk-free rates:** $r_t - r_t^* = E_t[\Delta c_{t+1}] - E_t[\Delta c_{t+1}^*]$
 - Agents' beliefs: $r_t - r_t^* = (s_t - s_t^*)$

- **Exchange Rates:** $\Delta e_{t+1} = \Delta c_{t+1} - \Delta c_{t+1}^*$
 - Agents' beliefs: $E_t[\Delta e_{t+1}] = (s_t - s_t^*)$
 - Nature: $\Delta e_{t+1} = \epsilon_{t+1} - \epsilon_{t+1}^*$
Main idea with log-preferences

- **Stochastic Discount Factors:** $m_{t+1} \propto -\Delta c_{t+1}$
 - Agents’ beliefs: $E_t[\Delta c_{t+1}] = s_t$
 - Nature: $\Delta c_{t+1} = \epsilon_{t+1}$

- **Risk-free rates:** $r_t - r_t^* = E_t[\Delta c_{t+1}] - E_t[\Delta c_{t+1}^*]$
 - Agents’ beliefs: $r_t - r_t^* = (s_t - s_t^*)$

- **Exchange Rates:** $\Delta e_{t+1} = \Delta c_{t+1} - \Delta c_{t+1}^*$
 - Agents’ beliefs: $E_t[\Delta e_{t+1}] = (s_t - s_t^*)$
 - Nature: $E_t[\Delta e_{t+1}] = 0$
Main idea with log-preferences

- Stochastic Discount Factors: $m_{t+1} \propto -\Delta c_{t+1}$
 - Agents' beliefs: $E_t[\Delta c_{t+1}] = s_t$
 - Nature: $\Delta c_{t+1} = \varepsilon_{t+1}$

- Risk-free rates: $r_t - r_t^* = E_t[\Delta c_{t+1}] - E_t[\Delta c_{t+1}^*]$
 - Agents' beliefs: $r_t - r_t^* = (s_t - s_t^*)$

- Exchange Rates: $\Delta e_{t+1} = \Delta c_{t+1} - \Delta c_{t+1}^*$
 - Agents' beliefs: $E_t[\Delta e_{t+1}] = (s_t - s_t^*)$
 - Nature: $E_t[\Delta e_{t+1}] = 0$

Ex post UIP regression slope is less than 1
Sentiment or long-run risks?

The recipe:

1. Epstein and Zin preferences
2. Consumption growth is predictable (through sentiment)
3. High correlation of predictable components
Sentiment or long-run risks?

The recipe:

1. Epstein and Zin preferences
2. Consumption growth is predictable (through sentiment)
3. High correlation of predictable components

This is reminiscent of Bansal and Yaron’s long-run risks model.
Sentiment or long-run risks?

The recipe:
1. Epstein and Zin preferences
2. Consumption growth is predictable (through sentiment)
3. High correlation of predictable components

This is reminiscent of Bansal and Yaron’s long-run risks model.

The paper considers a version with long-run risks and sentiment:

\[\Delta c_{t+1} = \mu_c + S_t + x_t + \varepsilon_{t+1} \]

- \(S_t \): sentiment
- \(x_t \): long-run risk
Sentiment or long-run risks?

The recipe:
1. Epstein and Zin preferences
2. Consumption growth is predictable (through sentiment)
3. High correlation of predictable components

This is reminiscent of Bansal and Yaron’s long-run risks model.

The paper considers a version with long-run risks and sentiment:

$$\Delta c_{t+1} = \mu_c + S_t + X_t + \epsilon_{t+1}$$

Can sentiment act as the long-run risk?
Sentiment as long-run risks?
Sentiment as long-run risks?

- Look for small, predictive, persistent component of consumption.
Sentiment as long-run risks?

- Look for small, predictive, persistent component of consumption.
- Can sentiment explain consumption growth?
Sentiment as long-run risks?

- Look for small, predictive, persistent component of consumption.

- Can sentiment explain consumption growth?

\[
\Delta c_{t+1} = 0.019 - 0.003 \cdot s_t + \varepsilon_{t+1}
\]

\[
(11.496)(-1.968)
\]

with \(R^2 = 0.052 \).
Sentiment as long-run risks?

- Look for small, predictive, persistent component of consumption.

- Can sentiment explain consumption growth?

\[
\Delta c_{t+1} = 0.019 - 0.003 \cdot s_t + \varepsilon_{t+1}
\]

\[
(11.496)(-1.968)
\]

with \(R^2 = 0.052 \).

- How persistent is sentiment?
Sentiment as long-run risks?

- Look for small, predictive, persistent component of consumption.

- Can sentiment explain consumption growth?

\[\Delta c_{t+1} = 0.019 - 0.003 \cdot s_t + \varepsilon_{t+1} \]

\[(11.496)(-1.968) \]

with \(R^2 = 0.052 \).

- How persistent is sentiment?

\[s_{t+1} = 0.078 + 0.737 \cdot s_t + \varepsilon_{t+1} \]

\[(0.866) (6.648) \]
Sentiment as long-run risks?

- Look for **small**, **predictive**, **persistent** component of consumption.

- Can sentiment explain consumption growth?

\[
\Delta c_{t+1} = 0.019 - 0.003 \cdot s_t + \epsilon_{t+1}
\]

\[
(11.496)(-1.968)
\]

with \(R^2 = 0.052 \).

- How persistent is sentiment?

\[
s_{t+1} = 0.078 + 0.737 \cdot s_t + \epsilon_{t+1}
\]

\[
(0.866)(6.648)
\]

Annual persistence = 0.737 \Rightarrow Monthly persistence \approx 0.975.
Broader Interpretation

- Nature has decided that consumption growth is *i.i.d.*
Broader Interpretation

- Nature has decided that consumption growth is \(i.i.d \).

- What about investors?
 - They want to test the null of \(i.i.d \) consumption growth against the alternative of consumption growth predictability;
Broader Interpretation

- Nature has decided that consumption growth is *i.i.d.*

- What about investors?
 - They want to test the null of *i.i.d.* consumption growth against the alternative of consumption growth predictability;
 - they have a finite data sample;
Broader Interpretation

Nature has decided that consumption growth is *i.i.d.*

What about investors?

- They want to test the null of *i.i.d.* consumption growth against the alternative of consumption growth predictability;
- they have a finite data sample;
- they make type II errors: the limited amount of data falsely lead them to reject the null of *i.i.d.* growth.
Broader Interpretation

- Nature has decided that consumption growth is \(i.i.d. \).

- What about investors?
 - They want to test the null of \(i.i.d. \) consumption growth against the alternative of consumption growth predictability;
 - they have a finite data sample;
 - they make type II errors: the limited amount of data falsely lead them to reject the null of \(i.i.d. \) growth.

- Any variable could have predictive power!
Nature has decided that consumption growth is *i.i.d.*

What about investors?

- They want to test the null of *i.i.d.* consumption growth against the alternative of consumption growth predictability;
- they have a finite data sample;
- they make type II errors: the limited amount of data falsely lead them to reject the null of *i.i.d.* growth.

Any variable could have predictive power!

What are the benefits of this interpretation?
Broader Interpretation

- Nature has decided that consumption growth is \(i.i.d. \).

- What about investors?
 - They want to test the null of \(i.i.d. \) consumption growth against the alternative of consumption growth predictability;
 - they have a finite data sample;
 - they make type II errors: the limited amount of data falsely lead them to reject the null of \(i.i.d. \) growth.

- Any variable could have predictive power!

- What are the benefits of this interpretation?
 - Potentially larger set of predictive variables to perform tests.
Broader Interpretation

- Nature has decided that consumption growth is *i.i.d.*

- What about investors?
 - They want to test the null of *i.i.d.* consumption growth against the alternative of consumption growth predictability;
 - they have a finite data sample;
 - they make type II errors: the limited amount of data falsely lead them to reject the null of *i.i.d.* growth.

- Any variable could have predictive power!

- What are the benefits of this interpretation?
 - Potentially larger set of predictive variables to perform tests.
 - A Bansal and Yaron model holds “in expectations”
 - Equity premium puzzle, FX volatility puzzle... solved!
Broader Interpretation

- Nature has decided that consumption growth is \(i.i.d. \).
- What about investors?
 - They want to test the null of \(i.i.d. \) consumption growth against the alternative of consumption growth predictability;
 - they have a finite data sample;
 - they make type II errors: the limited amount of data falsely lead them to reject the null of \(i.i.d. \) growth.
- Any variable could have predictive power!
- What are the benefits of this interpretation?
 - Potentially larger set of predictive variables to perform tests.
 - A Bansal and Yaron model holds “in expectations”
 → Equity premium puzzle, FX volatility puzzle... solved!

The paper does not have to be about sentiment.
Empirical Evidence

- Empirical predictions are tested through regressions on US sentiment alone and not on cross country sentiment spread.
Empirical predictions are tested through regressions on US sentiment alone and not on cross country sentiment spread.

E.g.: the model predicts that $\beta > 0$ in

$$\Delta e_{t+1} = \beta(s_t - s_t^*) + \epsilon_{t+1}$$
Empirical Evidence

- Empirical predictions are tested through regressions on US sentiment alone and not on cross country sentiment spread.

- E.g.: the model predicts that $\beta > 0$ in

$$\Delta e_{t+1} = \beta (s_t - s^*_t) + \epsilon_{t+1}$$

... but the paper tests $\tilde{\beta} > 0$ in the mis-specified

$$\Delta e_{t+1} = \tilde{\beta} s_t + \xi_{t+1}$$
Empirical predictions are tested through regressions on US sentiment alone and not on cross country sentiment spread.

E.g.: the model predicts that $\beta > 0$ in

$$\Delta e_{t+1} = \beta (s_t - s_t^*) + \varepsilon_{t+1}$$

... but the paper tests $\tilde{\beta} > 0$ in the mis-specified

$$\Delta e_{t+1} = \tilde{\beta} s_t + \xi_{t+1}$$

Should we worry about this?
Should we worry?

Say that the true DGP is

$$\Delta e_{t+1} = -1 \cdot (s_t - s^*_t) + \epsilon_{t+1}$$
Should we worry?

- Say that the true DGP is

\[\Delta e_{t+1} = -1 \cdot (s_t - s_t^*) + \epsilon_{t+1} \]

- How likely is it to estimate \(\tilde{\beta} > 0 \) in

\[\Delta e_{t+1} = \tilde{\beta}s_t + \xi_{t+1} \]
Should we worry?

Say that the true DGP is

$$\Delta e_{t+1} = -1 \cdot (s_t - s_t^*) + \varepsilon_{t+1}$$

How likely is it to estimate $\tilde{\beta} > 0$ in

$$\Delta e_{t+1} = \tilde{\beta} s_t + \xi_{t+1}$$

Omitted variables literature: the answer depends on

1. $\text{corr}(s_t, s_t^*)$
2. $\sigma(s_t^*)/\sigma(s_t)$
Results: \(t - \text{stat} \left(\hat{\beta} \right) \)

<table>
<thead>
<tr>
<th>corr((s_t, s_{t}^{*}))</th>
<th>(\sigma(s_{t}^{*})/\sigma(s_t))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>0.50</td>
<td>(-37.96)</td>
</tr>
<tr>
<td>0.60</td>
<td>(-32.64)</td>
</tr>
<tr>
<td>0.70</td>
<td>(-26.12)</td>
</tr>
<tr>
<td>0.80</td>
<td>(-16.90)</td>
</tr>
<tr>
<td>0.90</td>
<td>(-8.85)</td>
</tr>
<tr>
<td>1.00</td>
<td>(-0.12)</td>
</tr>
</tbody>
</table>
What matters is the volatility of the extent to which sentiment predicts consumption!

This could be an issue: why keep us wondering about it?

Use international sentiment data in Baker, Wurgler, and Yuan (2009) to test the actual prediction of the model!

The data are available: just do it!
Concluding remarks

- A very nice paper!

- Be more ambitious: the paper doesn’t have to be about sentiment!

- Empirical evidence should focus on the cross-country spread of predictable components!