Risks for the Long Run and the Real Exchange Rate
by Riccardo Colacito and Mariano Croce (2010)

Paper Summary by
Casey Dougal

UNC - Chapel Hill

March 18, 2010
The International Equity Premium Puzzle

- **PUZZLE**: Given the observed volatility of the US dollar, *power utility* implies a higher correlation between SDFs (consumption growth) across countries than observed.

- **SOLUTION**: A model incorporating Epstein-Zin preferences and long-run consumption growth dynamics resolves this puzzle.

- **KEY ASSUMPTIONS**: Agents care about the temporal distribution of risk *and* countries share very similar long-run growth prospects.
The International Equity Premium Puzzle

- **PUZZLE:** Given the observed volatility of the US dollar, power utility implies a higher correlation between SDFs (consumption growth) across countries than observed.

- **SOLUTION:** A model incorporating Epstein-Zin preferences and long-run consumption growth dynamics resolves this puzzle.

- **KEY ASSUMPTIONS:** Agents care about the temporal distribution of risk and countries share very similar long-run growth prospects.
PUZZLE: Given the observed volatility of the US dollar, \textit{power utility} implies a higher correlation between SDFs (consumption growth) across countries than observed.

SOLUTION: A model incorporating Epstein-Zin preferences and long-run consumption growth dynamics resolves this puzzle.

KEY ASSUMPTIONS: Agents care about the temporal distribution of risk \textit{and} countries share very similar long-run growth prospects.
To verify that countries long-run growth prospects are similar the authors:

- Measure long-run movements of consumption trends via projections on the set of predictive variables (Bansal, Kiku, and Yaron 2006)

- Find that the predictable components of consumption growth rates are highly persistent and that their correlation increases over time, just as the volatility of the exchange rate growth decreases
To verify that countries long-run growth prospects are similar the authors:

- Measure long-run movements of consumption trends via projections on the set of predictive variables (Bansal, Kiku, and Yaron 2006)

- Find that the predictable components of consumption growth rates are highly persistent and that their correlation increases over time, just as the volatility of the exchange rate growth decreases
Outline

1. The International Equity Premium Puzzle
2. Using Long Run Risk to Resolve the Puzzle
3. Estimating International Long-run Risks
Deriving the Puzzle

Domestic (M_t) and foreign (M^*_t) discount factors are related via a simple change of units:

\[M^*_t = M_t \frac{E_t}{E_{t-1}} \]

where E_t is the price of 1 unit of the foreign currency in terms of the domestic currency, e.g. the cost of 1 pound in terms of dollars.

**For the remainder of the presentation:

Domestic = US Foreign = UK
NOTE: M_t is the dollar-denominated pricing kernel, i.e. it prices dollar-denominated cash flows

Thus, if R_t is the return on a dollar-denominated asset, then the following equation holds

$$1 = \mathbb{E}_{t-1}(M_t R_t)$$

Similarly M^*_t prices pound-denominated assets, and so if R^*_t is the return on a pound-denominated asset the following holds

$$1 = \mathbb{E}_{t-1}(M^*_t R^*_t)$$
Deriving the Puzzle

Alternatively, we could convert pound returns into dollars via $R_t = (E_t/E_{t-1})R_t^*$ and price them using M_t yielding

$$1 = \mathbb{E}_{t-1} (M_t (E_t/E_{t-1})R_t^*)$$

Combining equations

$$\mathbb{E}_{t-1} (M_t^* R_t^*) = \mathbb{E}_{t-1} (M_t (E_t/E_{t-1})R_t^*)$$

which assuming complete markets implies

$$M_t^* = M_t \frac{E_t}{E_{t-1}}$$
Taking the log of both sides of $M^*_t = M_t \frac{E_t}{E_{t-1}}$ yields the following key equation:

$$\Delta e_t = m^*_t - m_t$$

where $m_t = \log M_t$, $m^*_t = \log M^*_t$, and $\Delta e_t = \log E_t - \log E_{t-1}$
Risks for the Long Run and the Real Exchange Rate

The International Equity Premium Puzzle

The Puzzle

\[\Delta e_t = m^*_t - m_t \text{ implies} \]

\[\sigma^2_{\Delta e_t} = \underbrace{\sigma^2_{m^*_t}}_{1.5\%} + \underbrace{\sigma^2_{m_t}}_{20\%} - 2 \underbrace{\rho_{m,m^*}}_{0.96} \underbrace{\sigma_{m^*_t} \sigma_{m_t}}_{20\%} \]

If investors have power utility then \(m_t^i = -\gamma \Delta c_t^i \).

\[\sigma^2_{\Delta e_t} = \underbrace{\gamma^2 \sigma^2_{\Delta c_t^*}}_{28\%} + \underbrace{\gamma^2 \sigma^2_{\Delta c_t}}_{20\%} - 2 \underbrace{\rho_{\Delta c,\Delta c^*}}_{0.3} \underbrace{\gamma \sigma_{\Delta c_t^*} \sigma_{\Delta c_t}}_{20\%} \]

SOLUTION: Allow for long-run consumption growth components to be highly correlated \(\Rightarrow \) High \(\rho_{m,m^*} \) and low \(\sigma^2_{\Delta e_t} \), but ALSO low \(\rho_{\Delta c,\Delta c^*} \).
The Puzzle

$$\Delta e_t = m_t^* - m_t$$ implies

$$\sigma_{\Delta e_t}^2 = \sigma_{m_t^*}^2 + \sigma_{m_t}^2 - 2 \rho_{m,m^*} \sigma_{m_t^*} \sigma_{m_t}$$

1.5% 20% 20% 0.96 20%

If investors have **power utility** then $m_t^i = -\gamma \Delta c_t^i$.

$$\sigma_{\Delta e_t}^2 = \gamma^2 \sigma_{\Delta c_t^*}^2 + \gamma^2 \sigma_{\Delta c_t}^2 - 2 \rho_{\Delta c,\Delta c^*} \gamma^2 \sigma_{\Delta c_t^*} \sigma_{\Delta c_t}$$

28% 20% 20% 0.3 20%

SOLUTION: Allow for long-run consumption growth components to be highly correlated \Rightarrow High ρ_{m,m^*} and low $\sigma_{\Delta e_t}^2$, but ALSO low $\rho_{\Delta c,\Delta c^*}$.
The Puzzle

\[\Delta e_t = m_t^* - m_t \] implies

\[
\frac{\sigma^2_{\Delta e_t}}{1.5\%} = \frac{\sigma^2_{m_t^*}}{20\%} + \frac{\sigma^2_{m_t}}{20\%} - 2 \rho_{m_t,m_t^*} \frac{\sigma_{m_t^*} \sigma_{m_t}}{0.96 \% 20\%}
\]

If investors have **power utility** then \(m_t^i = -\gamma \Delta c_t^i \).

\[
\frac{\sigma^2_{\Delta e_t}}{28\%} = \frac{\gamma^2 \sigma^2_{\Delta c_t^*}}{20\%} + \frac{\gamma^2 \sigma^2_{\Delta c_t}}{20\%} - 2 \rho_{\Delta c_t,\Delta c_t^*} \frac{\gamma \sigma_{\Delta c_t^*} \sigma_{\Delta c_t}}{0.3 \% 20\%}
\]

SOLUTION: Allow for long-run consumption growth components to be highly correlated \(\Rightarrow \) High \(\rho_{m_t,m_t^*} \) and low \(\sigma^2_{\Delta e_t} \), but ALSO low \(\rho_{\Delta c_t,\Delta c_t^*} \).
The Model: An Overview

- Two representative agent countries each producing a unique good
- Simplifying assumption: Countries only consume their own good (i.e. complete home bias)
- Both countries have Epstein-Zin preferences (γ CRA, ψ IES, δ discount rate)
- Economies are symmetric: same preference and transition law parameters
The Model: An Overview

- Two representative agent countries each producing a unique good

- Simplifying assumption: Countries only consume their own good (i.e. complete home bias)

- Both countries have Epstein-Zin preferences (γ CRA, ψ IES, δ discount rate)

- Economies are symmetric: same preference and transition law parameters
The Model: An Overview

- Two representative agent countries each producing a unique good
- Simplifying assumption: Countries only consume their own good (i.e. complete home bias)
- Both countries have Epstein-Zin preferences (γ CRA, ψ IES, δ discount rate)
- Economies are symmetric: same preference and transition law parameters
The Model: An Overview

- Two representative agent countries each producing a unique good
- Simplifying assumption: Countries only consume their own good (i.e. complete home bias)
- Both countries have Epstein-Zin preferences (γ CRA, ψ IES, δ discount rate)
- Economies are symmetric: same preference and transition law parameters
Epstein-Zin preferences imply the following log-pricing kernel:

\[m_{t+1} = \frac{1 - \gamma}{1 - 1/\psi} \log \delta - \frac{1 - \gamma}{\psi - 1} \Delta c_t + \frac{1/\psi - \gamma}{1 - 1/\psi} r_{c,t+1} \]

were \(r_{c,t+1} \) log-return on the asset that pays consumption.

Consumption and dividend growth rate dynamics are specified as follows:

\[\Delta c_t = \mu_c + x_{t-1} + \varepsilon_{c,t} \]
\[\Delta d_t = \mu_d + \lambda x_{t-1} + \varepsilon_{d,t} \]
\[x_t = \rho x x_{t-1} + \varepsilon_{x,t} \]
Epstein-Zin preferences imply the following log-pricing kernel:

\[m_{t+1} = \frac{1 - \gamma}{1 - 1/\psi} \log \delta - \frac{1 - \gamma}{\psi - 1} \Delta c_t + \frac{1/\psi - \gamma}{1 - 1/\psi} r_{c,t+1} \]

where \(r_{c,t+1} \) is the log-return on the asset that pays consumption.

Consumption and dividend growth rate dynamics are specified as follows:

\[\Delta c_t = \mu_c + x_{t-1} + \varepsilon_{c,t} \]
\[\Delta d_t = \mu_d + \lambda x_{t-1} + \varepsilon_{d,t} \]
\[x_t = \rho x x_{t-1} + \varepsilon_{x,t} \]
The Model

The vector of shocks are distributed

$$\begin{bmatrix} \varepsilon_{c,t} & \varepsilon_{d,t} & \varepsilon_{x,t} & \varepsilon_{c,t}^* & \varepsilon_{d,t}^* & \varepsilon_{x,t}^* \end{bmatrix} \sim N(0, \Sigma) \text{ i.i.d.}$$

with

$$\Sigma = \begin{bmatrix}
\sigma & 0 & 0 & \rho_c^{hf} & 0 & 0 \\
0 & \varphi_d \sigma & 0 & 0 & \rho_d^{hf} & 0 \\
0 & 0 & \varphi_e \sigma & 0 & 0 & \rho_x^{hf} \\
\rho_c^{hf} & 0 & 0 & \sigma & 0 & 0 \\
0 & \rho_d^{hf} & 0 & 0 & \varphi_d \sigma & 0 \\
0 & 0 & \rho_x^{hf} & 0 & 0 & \varphi_e \sigma \\
\end{bmatrix}$$
Risks for the Long Run and the Real Exchange Rate

Using Long Run Risk to Resolve the Puzzle

The Model: First-order Linear Approximation

\[m_{t+1} = \log \delta - \frac{1}{\psi} x_t + \delta \frac{1 - \gamma \psi}{\psi (1 - \rho_x \kappa_c)} \varepsilon_{x,t+1} - \gamma \varepsilon_{c,t+1} \]

\[r_{d,t+1} = \bar{r}_d + \frac{1}{\psi} x_t + \kappa_d \frac{\lambda - \frac{1}{\psi}}{1 - \rho_x \kappa_d} \varepsilon_{x,t+1} + \varepsilon_{d,t+1} \]

\[r_{f,t+1} = \bar{r}_f + \frac{1}{\psi} x_t \]

\[v_{d,t} = \bar{v}_d + \frac{\lambda - \frac{1}{\psi}}{1 - \rho_x \kappa_d} x_t \quad \text{price-dividend ratio} \]

\[v_{c,t} = \bar{v}_c + \frac{\lambda - \frac{1}{\psi}}{1 - \rho_x \kappa_c} x_t \quad \text{price-consumption ratio} \]

\[\Delta e_{t+1} = m^*_t - m_t \]
The Model: Exchange Rate Dynamics

Using the first and last equation

\[m_{t+1} = \log \delta - \frac{1}{\psi} x_t + \delta \frac{1 - \gamma \psi}{\psi (1 - \rho \kappa_c)} \varepsilon_{x,t+1} - \gamma \varepsilon_{c,t+1} \]

\[\Delta e_{t+1} = m_{t+1}^* - m_{t+1} \]

we obtain the following equation describing exchange rate dynamics

\[\Delta e_{t+1} - \mathbb{E}_t [\Delta e_{t+1}] = \delta \frac{1}{\psi} - \gamma \left(\varepsilon_{x,t+1}^* - \varepsilon_{x,t+1} \right) - \gamma \left(\varepsilon_{c,t+1}^* - \varepsilon_{c,t+1} \right) \]
The Model: Exchange Rate Dynamics

\[\Delta e_{t+1} - \mathbb{E}_t [\Delta e_{t+1}] = \delta \frac{1 - \gamma}{(1 - \rho_x \kappa_c)} (\varepsilon^*_{x,t+1} - \varepsilon_{x,t+1}) - \gamma (\varepsilon^*_{c,t+1} - \varepsilon_{c,t+1}) \]

1. Must have \(\gamma \neq \frac{1}{\psi} \) for long-run growth prospects to affect exchange rate

2. If \(\gamma > \frac{1}{\psi} \) and \(\varepsilon^*_{x,t+1} - \varepsilon_{x,t+1} > 0 \), then \(\Delta e_{t+1} \downarrow \)

3. The more persistent the long-run components are (high \(\rho_x \)), the stronger the impact of long-run news

4. The degree of cross-country correlation between the shocks matters, e.g. if shocks are perfectly correlated then they won’t alter the exchange rate
The Model: Exchange Rate Dynamics

\[\Delta e_{t+1} - \mathbb{E}_t [\Delta e_{t+1}] = \delta \frac{1}{\psi} - \gamma \left(\frac{\varepsilon_{x,t+1}^* - \varepsilon_{x,t+1}}{(1 - \rho_x \kappa_c)} (\varepsilon_{x,t+1}^* - \varepsilon_{x,t+1}) - \gamma (\varepsilon_{c,t+1}^* - \varepsilon_{c,t+1}) \right) \]

1. Must have \(\gamma \neq 1/\psi \) for long-run growth prospects to affect exchange rate

2. If \(\gamma > \frac{1}{\psi} \) and \(\varepsilon_{x,t+1}^* - \varepsilon_{x,t+1} > 0 \), then \(\Delta e_{t+1} \downarrow \)

3. The more persistent the long-run components are (high \(\rho_x \)), the stronger the impact of long-run news

4. The degree of cross-country correlation between the shocks matters, e.g. if shocks are perfectly correlated then they won’t alter the exchange rate
The Model: Exchange Rate Dynamics

\[\Delta e_{t+1} - \mathbb{E}_t [\Delta e_{t+1}] = \delta \frac{1 - \gamma}{(1 - \rho_x \kappa_c)} (\epsilon_x^{*,t+1} - \epsilon_x^{*,t+1}) - \gamma (\epsilon_c^{*,t+1} - \epsilon_c^{*,t+1}) \]

1. Must have \(\gamma \neq 1/\psi \) for long-run growth prospects to affect exchange rate

2. If \(\gamma > \frac{1}{\psi} \) and \(\epsilon_x^{*,t+1} - \epsilon_x^{*,t+1} > 0 \), then \(\Delta e_{t+1} \downarrow \)

3. The more persistent the long-run components are (high \(\rho_x \)), the stronger the impact of long-run news

4. The degree of cross-country correlation between the shocks matters, e.g. if shocks are perfectly correlated then they won’t alter the exchange rate
The Model: Exchange Rate Dynamics

\[\Delta e_{t+1} - \mathbb{E}_t [\Delta e_{t+1}] = \delta \frac{1}{\psi} \left(\frac{1}{\psi} - \gamma \right) (\varepsilon^*_x, t+1 - \varepsilon_x, t+1) - \gamma (\varepsilon^*_c, t+1 - \varepsilon_c, t+1) \]

1. Must have \(\gamma \neq 1/\psi \) for long-run growth prospects to affect exchange rate

2. If \(\gamma > \frac{1}{\psi} \) and \(\varepsilon^*_x, t+1 - \varepsilon_x, t+1 > 0 \), then \(\Delta e_{t+1} \downarrow \)

3. The more persistent the long-run components are (high \(\rho_x \)), the stronger the impact of long-run news

4. The degree of cross-country correlation between the shocks matters, e.g. if shocks are perfectly correlated then they won’t alter the exchange rate
Model Calibration

Model is calibrated to match US and UK data averages

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ψ</td>
<td>Intertemporal elasticity of substitution</td>
<td>2</td>
</tr>
<tr>
<td>γ</td>
<td>Risk aversion</td>
<td>4.25</td>
</tr>
<tr>
<td>δ</td>
<td>Subjective discount factor</td>
<td>0.998</td>
</tr>
<tr>
<td>μ_c</td>
<td>Average consumption growth</td>
<td>15×10^{-4}</td>
</tr>
<tr>
<td>ρ</td>
<td>Autoregressive coefficient of the long-run component x_t</td>
<td>0.987</td>
</tr>
<tr>
<td>φ_e</td>
<td>Ratio of long-run shock and short-run shock volatilities</td>
<td>0.048</td>
</tr>
<tr>
<td>σ</td>
<td>Standard deviation of the short-run shock to consumption</td>
<td>68×10^{-4}</td>
</tr>
<tr>
<td>μ_d</td>
<td>Average dividend growth</td>
<td>0.0007</td>
</tr>
<tr>
<td>λ</td>
<td>Leverage</td>
<td>3.0</td>
</tr>
<tr>
<td>φ_d</td>
<td>Volatility ratio of short-run shocks to dividend and consumption growth</td>
<td>5.0</td>
</tr>
<tr>
<td>ρ^{hf}</td>
<td>Cross-country correlation of the long-run shock</td>
<td>1.0</td>
</tr>
<tr>
<td>ρ^{hf}</td>
<td>Cross-country correlation of the short-run shock to consumption</td>
<td>0.3</td>
</tr>
<tr>
<td>ρ^{hf}</td>
<td>Cross-country correlation of the short-run shock to dividends</td>
<td>-0.1</td>
</tr>
</tbody>
</table>
Model Calibration: Varying EIS

Dark-line corresponds to the baseline calibration.

Don’t need EIS > 1. High correlation between SDF’s is driven by high persistence and high correlation of long-run components (i.e. high \(\rho_x \) and \(\rho_{hf} \)).
Model Calibration: Varying CRRA

Horizontal lines indicate feasible range for exchange rate growth volatility
Model Calibration

<table>
<thead>
<tr>
<th>Key Moments of International Markets - Symmetric Calibration</th>
<th>US</th>
<th>UK</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho (m^h, m^f)$</td>
<td>Correlation of pricing kernels</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$\sigma (\Delta e)$</td>
<td>Volatility of FX growth</td>
<td>11.211</td>
<td>11.832</td>
</tr>
<tr>
<td>$E(\Delta e)$</td>
<td>Average FX growth</td>
<td>1.330</td>
<td>0.000</td>
</tr>
<tr>
<td>$\rho (\Delta e_{t+1}, \Delta e_t)$</td>
<td>Autocorrelation of FX growth</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td>$\rho (\Delta e_{t+1}, v_{d,t} - v_{d,t}^*)$</td>
<td>Correlation of FX growth and price-dividend ratios differences</td>
<td>0.070</td>
<td>-0.003</td>
</tr>
<tr>
<td>$\rho (\Delta e, \Delta c - \Delta c^*)$</td>
<td>Correlation of FX growth and consumption growth differentials</td>
<td>0.15</td>
<td>0.80</td>
</tr>
<tr>
<td>$\rho (v_d, v_{d,t-1})$</td>
<td>Autocorrelation of price-dividend ratio</td>
<td>0.624</td>
<td>0.716</td>
</tr>
<tr>
<td>$\sigma (v_d)$</td>
<td>Volatility of price-dividend ratio</td>
<td>31.207</td>
<td>32.210</td>
</tr>
<tr>
<td>$E(v_d)$</td>
<td>Average price-dividend ratio</td>
<td>3.331</td>
<td>2.890</td>
</tr>
<tr>
<td>$E(r_d - r_f)$</td>
<td>Average excess return</td>
<td>5.504</td>
<td>6.501</td>
</tr>
<tr>
<td>$\sigma (r_d - r_f)$</td>
<td>Volatility of excess return</td>
<td>17.130</td>
<td>22.830</td>
</tr>
<tr>
<td>$E(r_f)$</td>
<td>Average risk free rate</td>
<td>1.470</td>
<td>1.620</td>
</tr>
<tr>
<td>$\sigma (r_f)$</td>
<td>Volatility of risk free rate</td>
<td>1.530</td>
<td>2.920</td>
</tr>
<tr>
<td>$\rho (r_d - r_f, r_d^* - r_f^*)$</td>
<td>Correlation of excess returns</td>
<td>0.670</td>
<td>0.603</td>
</tr>
<tr>
<td>$\rho (v_d, v_d^*)$</td>
<td>Correlation of price-dividend ratios</td>
<td>0.770</td>
<td>0.925</td>
</tr>
<tr>
<td>$\rho (\Delta d, \Delta d^*)$</td>
<td>Correlation of dividend growth</td>
<td>-0.03</td>
<td>-0.07</td>
</tr>
<tr>
<td>$\rho (r_f, r_f^*)$</td>
<td>Correlation of risk free rates</td>
<td>0.653</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Conclusion: We can’t reject that US and UK predictive components are highly persistent and perfectly correlated.

Real Conclusion: The likelihood function is very uninformative.
Risks for the Long Run and the Real Exchange Rate

Estimating International Long-run Risks

Monte-Carlo Experiment

Suppose you have 2 time-series for consumption which are both \(T \) years in length.

QUESTION: What is the minimum sample size \(T \) needed to sharply identify the long-run components and reject the random walk model?

ANSWER: If \(\rho(x, x^*) = 1 \), then you need \(T = 80 \). However, if \(\rho(x, x^*) = .95 \), then you \(T = 200 \).

CONCLUSION: Consumption data alone are not enough to identify the low frequency dynamics of the long-run components of consumption growth.
Suppose you have 2 time-series for consumption which are both T years in length.

QUESTION: What is the minimum sample size T needed to sharply identify the long-run components and reject the random walk model?

ANSWER: If $\rho(x, x^*) = 1$, then you need $T = 80$. However, if $\rho(x, x^*) = .95$, then you $T = 200$.

CONCLUSION: Consumption data alone are not enough to identify the low frequency dynamics of the long-run components of consumption growth.
Monte-Carlo Experiment

Suppose you have 2 time-series for consumption which are both T years in length.

QUESTION: What is the minimum sample size T needed to sharply identify the long-run components and reject the random walk model?

ANSWER: If $\rho(x, x^*) = 1$, then you need $T = 80$. However, if $\rho(x, x^*) = .95$, then you $T = 200$.

CONCLUSION: Consumption data alone are not enough to identify the low frequency dynamics of the long-run components of consumption growth.
Predictive Regressions Approach

Bansal et al. (2006) document that predictive variables (e.g. lagged price-dividend, risk free rates, etc.) contain a direct measure of long-run risk at each date and state.

To see this, recall the price dividend ratio formula from the linearized model:

\[v_{d,t} = \bar{v}_d + \frac{\lambda - \frac{1}{\psi}}{1 - \rho_x \kappa_d} x_t \quad \Leftrightarrow \quad x_t = k_0 + k_1 v_{d,t} \]

Thus, estimates of time-series \(\hat{x}_t^i \) and \(i \in \{US, UK\} \) can be obtained from the fitted values of

\[\Delta c_t^i \text{ on } pd_{t-1}^i, r_{f,t-1}^i, \Delta c_{t-1}^i, cy_{t-1}^i, \text{ default}_{t-1}^i \]
Plot of \hat{x}_t^{US} (red) and \hat{x}_t^{UK} (black)

Notice the changing correlation over time!
Negative Relationship between $\sigma(\Delta e)$ and $\text{corr}(\hat{x}^{US}, \hat{x}^{UK})$
Euler Equations’ GMM

<table>
<thead>
<tr>
<th></th>
<th>Conditional Estimation</th>
<th>Joint Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P/D</td>
<td>P/D and R_f</td>
</tr>
<tr>
<td>ψ</td>
<td>5.526</td>
<td>3.881</td>
</tr>
<tr>
<td></td>
<td>(-38.864)</td>
<td>(-31.361)</td>
</tr>
<tr>
<td>γ</td>
<td>13.537</td>
<td>13.915</td>
</tr>
<tr>
<td></td>
<td>(-1.053)</td>
<td>(-2.182)</td>
</tr>
<tr>
<td>ρx</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wald-stat</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p-value</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>γ − 1/ψ</td>
<td>5.872</td>
<td>16.644</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.001)</td>
</tr>
</tbody>
</table>

First three columns are counterparts to exercises in Bansal et al. (2006). However, γ estimates are half as large as Bansal et al. (2006), and ψ > 1! Exchange-rate info matters.
Want to directly compare the time series of returns and exchange rates implied by the model i.e. want to estimate

\[
E \left[(\tilde{r}_m^{i,t+1} - \tilde{r}_f^{i,t+1}) (r_m^{i,t+1} - r_f^{i,t+1}) \right] = 0 \quad i \in \{\text{US, UK}\}
\]

\[
E \left[(\tilde{r}_f^{i,t+1} - \tilde{r}_f^{i,t+1}) \right] = 0 \quad i \in \{\text{US, UK}\}
\]

But to estimate these equations we need to construct the time series for \(\Delta d_t \) to calculate \(\tilde{r}_m^{i,t+1} \)
Verifying Common Long-run Component in Consumption and Dividends

Thus to verify the imposed structure on consumption and dividends compare the joint estimation of

\[
\Delta c_t^i = \beta_0^i \Delta c_{t-1}^i + \beta_1^i p d_{t-1}^i + \beta_2^i \Delta c_{t-1}^i + \beta_3^i \text{default}_{t-1}^i + \beta_4^i r_{f,t-1}^i + \varepsilon_{c,t}^i
\]
\[
\Delta d_t^i = \lambda^i (\beta_0^i \Delta c_{t-1}^i + \beta_1^i p d_{t-1}^i + \beta_2^i \Delta c_{t-1}^i + \beta_3^i \text{default}_{t-1}^i + \beta_4^i r_{f,t-1}^i) + \varepsilon_{d,t}^i
\]

to the joint estimation of

\[
\Delta c_t^i = \phi_0^i \Delta c_{t-1}^i + \phi_1^i p d_{t-1}^i + \phi_2^i \Delta c_{t-1}^i + \phi_3^i \text{default}_{t-1}^i + \phi_4^i r_{f,t-1}^i + \varepsilon_{c,t}^i
\]
\[
\Delta d_t^i = \phi_0^i \Delta c_{t-1}^i + \phi_1^i p d_{t-1}^i + \phi_2^i \Delta c_{t-1}^i + \phi_3^i \text{default}_{t-1}^i + \phi_4^i r_{f,t-1}^i \varepsilon_{d,t}^i
\]

Null test that \(\phi_j^i = \lambda^i \beta_j^i \) cannot be rejected at the 5% level \(\Rightarrow \) common long-run component in consumption and dividends
Verifying Common Long-run Component in Consumption and Dividends

Thus to verify the imposed structure on consumption and dividends compare the joint estimation of

$$
\Delta c_t^i = \beta_0^i \Delta c_{t-1}^i + \beta_1^i p_{d_{t-1}}^i + \beta_2^i \Delta c_{y_t}^i + \beta_3^i \text{default}_t^i + \beta_4^i r_{f,t}^i + \varepsilon_{c,t}^i
$$
$$
\Delta d_t^i = \lambda^i (\beta_0^i \Delta c_{t-1}^i + \beta_1^i p_{d_{t-1}}^i + \beta_2^i \Delta c_{y_t}^i + \beta_3^i \text{default}_t^i + \beta_4^i r_{f,t}^i) + \varepsilon_{d,t}^i
$$

to the joint estimation of

$$
\Delta c_t^i = \phi_0^i \Delta c_{t-1}^i + \phi_1^i p_{d_{t-1}}^i + \phi_2^i \Delta c_{y_t}^i + \phi_3^i \text{default}_t^i + \phi_4^i r_{f,t}^i + \varepsilon_{c,t}^i
$$
$$
\Delta d_t^i = \phi_0^i \Delta c_{t-1}^i + \phi_1^i p_{d_{t-1}}^i + \phi_2^i \Delta c_{y_t}^i + \phi_3^i \text{default}_t^i + \phi_4^i r_{f,t}^i \varepsilon_{d,t}^i
$$

Null test that $\phi_j^i = \lambda^i \beta_j^i$ cannot be rejected at the 5% level \Rightarrow common long-run component in consumption and dividends
GMM Estimation with Dividends

<table>
<thead>
<tr>
<th></th>
<th>Conditional Estimation</th>
<th>Joint Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P/D</td>
<td>P/D and R_f</td>
</tr>
<tr>
<td>ψ</td>
<td>2.139</td>
<td>1.538</td>
</tr>
<tr>
<td></td>
<td>(0.331)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>γ</td>
<td>6.254</td>
<td>5.692</td>
</tr>
<tr>
<td></td>
<td>(0.542)</td>
<td>(0.439)</td>
</tr>
<tr>
<td>$\gamma - 1/\psi$</td>
<td>5.787</td>
<td>5.042</td>
</tr>
<tr>
<td></td>
<td>(0.604)</td>
<td>(0.438)</td>
</tr>
<tr>
<td>ρ_x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wald-stat</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p-value</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>J-stat</td>
<td>41.58</td>
<td>29.96</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td></td>
<td>42.24</td>
<td>11.16</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.048)</td>
</tr>
</tbody>
</table>