International Asset Pricing and Risk Sharing with Recursive Preferences

Riccardo Colacito

Prepared for Tom Sargent’s PhD class
(Part 2)
Roadmap

Yesterday
- International asset pricing (exchange rates, co-movements of int’l stock market returns, ...)
- Agents have recursive preferences
- No equilibrium trade

Today
- Agents consume bundles of domestic and foreign goods
- Trade arises as an equilibrium outcome
- Efficient risk-sharing with recursive preferences
Battle plan

1. A benchmark model: Anderson, JET 2005
 ▶ one good economy
 ▶ set the stage for risk sharing with recursive preferences
Battle plan

1. A benchmark model: Anderson, JET 2005
 - one good economy
 - set the stage for risk sharing with recursive preferences

2. Leads the way to Colacito and Croce, 2010
 - two goods economy
Agents have risk-sensitive preferences

\[U_{i,t} = (1 - \delta) \log C_{i,t} + \delta \theta_i \log E_t \exp \left\{ \frac{U_{i,t+1}}{\theta_i} \right\}, \quad \forall i \in \{h, f\} \]

where \(\theta_i = 1 / (1 - \gamma_i) \).
Agents have risk-sensitive preferences

\[U_{i,t} = (1 - \delta) \log C_{i,t} + \delta E_t[U_{i,t+1}], \quad \forall i \in \{h, f\} \]

where \(\theta_i = 1 / (1 - \gamma_i) \). If \(\theta_i \to -\infty \): time additive case.
Agents have risk-sensitive preferences

\[U_{i,t} = (1 - \delta) \log C_{i,t} + \delta \theta_i \log E_t \exp \left\{ \frac{U_{i,t+1}}{\theta_i} \right\}, \quad \forall i \in \{h, f\} \]

where \(\theta_i = 1/(1 - \gamma_i) \).
A benchmark model: Anderson, JET 2005

Agents have risk-sensitive preferences

\[U_{i,t} \approx (1 - \delta) \log C_{i,t} + \delta E_t [U_{i,t+1}] + \frac{\delta}{2 \theta_i} V_t [U_{i,t+1}], \quad \forall i \in \{h, f\} \]

where \(\theta_i = 1 / (1 - \gamma_i) \). Conditional Variance matters.
A benchmark model: Anderson, JET 2005

- Agents have risk-sensitive preferences

\[U_{i,t} = (1 - \delta) \log C_{i,t} + \delta \theta_i \log E_t \exp \left\{ \frac{U_{i,t+1}}{\theta_i} \right\}, \quad \forall i \in \{h, f\} \]

where \(\theta_i = 1 / (1 - \gamma_i) \).
Agents have risk-sensitive preferences

\[U_{i,t} = (1 - \delta) \log C_{i,t} + \delta \theta_i \log E_t \exp \left\{ \frac{U_{i,t+1}}{\theta_i} \right\}, \quad \forall i \in \{h, f\} \]

where \(\theta_i = 1/(1 - \gamma_i) \).

One good economy

\[C_{h,t} + C_{f,t} = Z_t \]
Agents have risk-sensitive preferences

\[U_{i,t} = (1 - \delta) \log C_{i,t} + \delta \theta_i \log E_{t} \exp \left\{ \frac{U_{i,t+1}}{\theta_i} \right\}, \quad \forall i \in \{h, f\} \]

where \(\theta_i = 1 / (1 - \gamma_i) \).

One good economy

\[C_{h,t} + C_{f,t} = Z_t \]

Supply of \(Z_t \) is i.i.d. homoscedastic.
A benchmark model: Anderson, JET 2005

- Agents have risk-sensitive preferences

\[U_{i,t} = (1 - \delta) \log C_{i,t} + \delta \theta_i \log E_t \exp \left\{ \frac{U_{i,t+1}}{\theta_i} \right\}, \quad \forall i \in \{h, f\} \]

where \(\theta_i = 1 / (1 - \gamma_i) \).

- One good economy

\[C_{h,t} + C_{f,t} = Z_t \]

- Supply of \(Z_t \) is i.i.d. homoscedastic.

- Complete markets.
Pareto problem

Efficient allocations are the solution to the planner’s problem

choose \(\{C_{h,t}, C_{f,t}\}_{t=0}^{+\infty} \)

to max \(Q = \mu_h U_{h,0} + \mu_f U_{f,0} \)

s.t. \(C_{h,t} + C_{f,t} = Z_t, \quad \forall t \geq 0 \)

where
Efficient allocations are the solution to the planner’s problem

choose \(\{ C_{h,t}, C_{f,t} \}_{t=0}^{+\infty} \)

to max \(Q = \mu_h U_{h,0} + \mu_f U_{f,0} \)

s.t. \(C_{h,t} + C_{f,t} = Z_t, \quad \forall t \geq 0 \)

where

- \(\mu_h \) and \(\mu_f \) are the Pareto weights.
- Notation: \(S = \mu_h / \mu_f \).
Risk Sharing with Recursive Preferences: why is this hard?

Take first order conditions of planner’s problem:
Risk Sharing with Recursive Preferences: why is this hard?

Take first order conditions of planner’s problem:

$$\mu_h \frac{1}{C_{h,0}} = \frac{1}{Z_0 - C_{h,0}} \mu_f$$
Take first order conditions of planner’s problem:

\[
\begin{align*}
\mu_h \frac{1}{C_{h,0}} &= \frac{1}{Z_0 - C_{h,0}} \mu_f \\
\exp \left\{ \frac{U_{h,1}}{\theta_h} \right\} \mu_h \frac{1}{C_{h,1}} &= \frac{1}{Z_1 - C_{h,1}} \mu_f \exp \left\{ \frac{U_{f,1}}{\theta_f} \right\} \\
E_0 \exp \left\{ \frac{U_{h,1}}{\theta_h} \right\} &= \frac{E_0 \exp \left\{ \frac{U_{f,1}}{\theta_f} \right\}}{Z_1 - C_{h,1}}
\end{align*}
\]
Risk Sharing with Recursive Preferences: why is this hard?

Take first order conditions of planner’s problem:

\[\mu_h \frac{1}{C_{h,0}} = \frac{1}{Z_0 - C_{h,0}} \mu_f \]

\[\exp \left\{ \frac{U_{h,1}}{\theta_h} \right\} \mu_h \frac{1}{C_{h,1}} = \frac{1}{Z_1 - C_{h,1}} \mu_f \frac{\exp \left\{ \frac{U_{f,1}}{\theta_f} \right\}}{E_0 \exp \left\{ \frac{U_{f,1}}{\theta_f} \right\}} \]

\[\vdots \]

\[\exp \left\{ \frac{U_{h,t}}{\theta_h} \right\} \frac{1}{E_{t-1} \exp \left\{ \frac{U_{h,t}}{\theta_h} \right\}} \exp \left\{ \frac{U_{h,1}}{\theta_h} \right\} \mu_h \frac{1}{C_{h,t}} = \frac{1}{Z_t - C_{h,t}} \mu_f \exp \left\{ \frac{U_{f,1}}{\theta_f} \right\} \frac{\exp \left\{ \frac{U_{f,1}}{\theta_f} \right\}}{E_0 \exp \left\{ \frac{U_{f,1}}{\theta_f} \right\}} \frac{\exp \left\{ \frac{U_{f,t}}{\theta_f} \right\}}{E_{t-1} \exp \left\{ \frac{U_{f,t}}{\theta_f} \right\}} \]

We introduce an endogenous state variable and make the problem recursive.

\[
\frac{\mu_{h,t}}{C_{h,t}} = \frac{1}{Z_t - C_{h,t}} \frac{\mu_{f,t}}{\mu_{h,t} - 1} \exp \left\{ \frac{U_{h,t}}{\theta_h} \right\} E_{t-1} \exp \left\{ \frac{U_{f,t}}{\theta_f} \right\}
\]

and \(\frac{\mu_{h,0}}{\mu_{f,0}} = \frac{\mu_h}{\mu_f} \).
Recursive formulation

Lucas and Stokey (JET, 1983) and Kan (JET, 1995):

\[Q(Z, \mu) = \max_{\{C_i, U_{i}^{j'}, i \in \{h, f\}\}} \left(\sum_{i \in \{h, f\}} \mu_i \left((1 - \delta) \log C_i(Z, \mu_i) + \delta \theta_i \log \sum_j \pi_j \exp \left\{ U_{i}^{j''}/\theta_i \right\} \right) \right) \]

subject to

\[\min_{\mu'} Q(Z^{j'}, \mu^{j''}) - \sum_{i \in \{h, f\}} \mu^{j''} U_{i}^{j'} \geq 0 \]
\[C_h + C_f \leq Z \]
Recursive formulation

Lucas and Stokey (JET, 1983) and Kan (JET, 1995):

\[
Q^{k+1}(Z, \mu) = \max_{\{C_i, U'_i\}} \sum_{i \in \{h, f\}} \mu_i \left[(1 - \delta) \log C_i(Z, \mu_i) + \delta \theta_i \log \sum_j \pi^j \exp \left\{ U''_i / \theta_i \right\} \right]
\]

subject to

\[
\min_{\mu'} Q^k(Z', \mu''') - \sum_{i \in \{h, f\}} \mu'' U'_i \geq 0
\]

\[
C_h + C_f \leq Z
\]
Allocations in Anderson’s economy

Special case: \(\theta_h \to -\infty, \theta_f \to -\infty \)

\[
C_{h,t} = \mu_h \cdot Z_t = \frac{S}{1+S} Z_t
\]

\[
C_{f,t} = \mu_f \cdot Z_t = \frac{1}{1+S} Z_t
\]

where

\[
S = \frac{\mu_h}{\mu_f}
\]
Allocations in Anderson’s economy

Risk Sensitive Preferences (general case)

\[C_{h,t} = \mu_{h,t} \cdot Z_t = \frac{S_t}{1 + S_t} Z_t \]
\[C_{f,t} = \mu_{f,t} \cdot Z_t = \frac{1}{1 + S_t} Z_t \]

where

\[S_t = S_{t-1} \cdot \frac{\delta \exp \{ U_{h,t}/\theta \}}{E_{t-1} \exp \{ U_{h,t}/\theta \}} \bigg/ \frac{\delta \exp \{ U_{f,t}/\theta \}}{E_{t-1} \exp \{ U_{f,t}/\theta \}} \]
Dynamics and Stationarity

Questions

1. Does S_t move over time?
2. Is the dynamics stationary?

Answers

1. It depends.
2. Typically not...

We shall see two examples of Anderson’s economy...
Example #1: identical risk-sensitive preferences

- Let $\theta_h = \theta_f = \theta$.

Guess and verify that solution to expected utility control problem also solve recursive risk sharing problem.

With two identical risk-sensitive agents:

$S_t = S_0$, $\forall t$.

Example #1: identical risk-sensitive preferences

- Let $\theta_h = \theta_f = \theta$.
- Guess and verify that solution to expected utility control problem also solve recursive risk sharing problem.
Example #1: identical risk-sensitive preferences

- Let $\theta_h = \theta_f = \theta$.
- Guess and verify that solution to expected utility control problem also solve recursive risk sharing problem.

- With two identical risk sensitive agents: $S_t = S_0$, $\forall t$.
Example #2: one expected utility agent

- Let $\theta_f = -\infty$, i.e. the foreign agent has expected utility preferences.
Example #2: one expected utility agent

- Let $\theta_f = -\infty$, i.e. the foreign agent has expected utility preferences.
- Pareto weights are now time-varying according to:

\[
S_t = S_{t-1} \frac{\exp \left\{ \frac{U_{h,t}}{\theta_h} \right\}}{E_{t-1} \exp \left\{ \frac{U_{h,t}}{\theta_h} \right\}}
\]
Example #2: one expected utility agent

- Let $\theta_f = -\infty$, i.e. the foreign agent has expected utility preferences.

Pareto weights are now time-varying according to:

$$S_t = S_{t-1} \frac{\exp \left \{ \frac{U_{h,t}}{\theta_h} \right \}}{E_{t-1} \exp \left \{ \frac{U_{h,t}}{\theta_h} \right \}}$$

- It can be shown that S_t converges to zero almost surely.
Example #2: one expected utility agent

► Let $\theta_f = -\infty$, i.e. the foreign agent has expected utility preferences.

► Pareto weights are now time-varying according to:

$$S_t = S_{t-1} \frac{\exp \left\{ \frac{U_{h,t}}{\theta_h} \right\}}{E_{t-1} \exp \left\{ \frac{U_{h,t}}{\theta_h} \right\}}$$

► It can be shown that S_t converges to zero almost surely.

1. Show that $\mu_{h,t}$ is a supermartingale
Example #2: one expected utility agent

- Let $\theta_f = -\infty$, i.e. the foreign agent has expected utility preferences.
- Pareto weights are now time-varying according to:

$$S_t = S_{t-1} \frac{\exp \left\{ \frac{U_{h,t}}{\theta_h} \right\}}{E_{t-1} \exp \left\{ \frac{U_{h,t}}{\theta_h} \right\}}$$

- It can be shown that S_t converges to zero almost surely.

1. Show that $\mu_{h,t}$ is a supermartingale
2. Invoke Doob’s convergence theorem
Example #2: one expected utility agent

- Let $\theta_f = -\infty$, i.e. the foreign agent has expected utility preferences.
- Pareto weights are now time-varying according to:

$$
S_t = S_{t-1} \frac{\exp \left\{ \frac{U_{h,t}}{\theta_h} \right\}}{E_{t-1} \exp \left\{ \frac{U_{h,t}}{\theta_h} \right\}}
$$

- It can be shown that S_t converges to zero almost surely.

1. Show that $\mu_{h,t}$ is a supermartingale
2. Invoke Doob's convergence theorem

- With two non-identical risk sensitive agents: $S_\infty \rightarrow \{0, +\infty\}$.
Pareto weight of Expected Utility Agent

Fig. 2. Evolution with logarithmic rewards. An example of the evolution of the Pareto weight on agent two when there are two agents who have logarithmic reward functions. The discount factor for both agents is $\gamma = 0.95$. Agent two has time-additive preferences so that $\gamma_2 = 0$ and agent one has risk-sensitive preferences with $\gamma_1 = -1$. The probabilities of the state are given by specification B. The initial Pareto weight on agent two is 0.5. The Pareto weight is graphed for 1×10^7 time periods. (On the graph one point is plotted for every 10,000 periods so that 1000 points are plotted. This masks the local variability in the Pareto weights.)

Consider an economy in which agents have distorted beliefs and time-additive preferences. Let agent i believe that the time zero probability that the history x_t will be realized at time t is $M_{it}(x_t)$. These are well formed beliefs since $M_{it} \geq 0$ and for any t, $\sum x_t(M_{it}(x_t)) = 1$. The summation over x_t indicates summation over all histories that can be realized at time t. We assume the agent takes these probabilities as being exogenous, even though they will depend upon the Pareto optimal allocation. Let agent i's lifetime utility function be

$$\sum_{t=0}^{\infty} \left(\sum x_t \frac{u_i(x_t)}{\gamma_t} M_{it}(x_t) \right)$$

where M_{it} is treated as exogenous.

- Only the Expected Utility Agent “survives”.

▶
Lessons from Anderson’s economy

- Risk Sharing Scheme with risk sensitive preferences in a one good economy features a tension between:
 1. non-trivial dynamics (i.e. consumption shares move around)
 2. non-degenerate equilibrium (i.e. all agents “survive” in the long-run)
Lessons from Anderson’s economy

- Risk Sharing Scheme with risk sensitive preferences in a one good economy features a tension between
 1. a non-trivial dynamics (i.e. consumption shares move around)
Lessons from Anderson’s economy

- Risk Sharing Scheme with risk sensitive preferences in a one good economy features a tension between
 1. a non-trivial dynamics (i.e. consumption shares move around)
 2. non-degenerate equilibrium (i.e. all agents “survive” in the long-run)
Lessons from Anderson’s economy

- Risk Sharing Scheme with risk sensitive preferences in a one good economy features a tension between
 1. a non-trivial dynamics (i.e. consumption shares move around)
 2. non-degenerate equilibrium (i.e. all agents “survive” in the long-run)

- The quest for 1+2
Lessons from Anderson’s economy

- Risk Sharing Scheme with risk sensitive preferences in a one good economy features a tension between
 1. a non-trivial dynamics (i.e. consumption shares move around)
 2. non-degenerate equilibrium (i.e. all agents “survive” in the long-run)

- The quest for 1+2
 1. heterogeneous δ’s?

Colacito and Croce: multiple goods and consumption home bias.
Lessons from Anderson’s economy

- Risk Sharing Scheme with risk sensitive preferences in a one good economy features a tension between
 1. a non-trivial dynamics (i.e. consumption shares move around)
 2. non-degenerate equilibrium (i.e. all agents “survive” in the long-run)
- The quest for 1+2
 1. heterogeneous δ’s?
 2. heterogeneous reward functions?
Lessons from Anderson’s economy

- Risk Sharing Scheme with risk sensitive preferences in a one good economy features a tension between
 1. a non-trivial dynamics (i.e. consumption shares move around)
 2. non-degenerate equilibrium (i.e. all agents “survive” in the long-run)
- The quest for 1+2
 1. heterogeneous δ’s?
 2. heterogeneous reward functions?
- Colacito and Croce: multiple goods and consumption home bias.
Setup of Colacito and Croce economy

- Agents have risk-sensitive preferences

\[U_{i,t} = (1 - \delta) \log C_{i,t} + \delta \theta \log E_t \exp \left\{ \frac{U_{i,t+1}}{\theta} \right\}, \quad \forall i \in \{h, f\} \]

where \(\theta = 1 / (1 - \gamma) \).
Setup of Colacito and Croce economy

- Agents have risk-sensitive preferences

\[U_{i,t} = (1 - \delta) \log C_{i,t} + \delta \theta \log E_t \exp \left\{ \frac{U_{i,t+1}}{\theta} \right\}, \quad \forall i \in \{h, f\} \]

where \(\theta = 1 / (1 - \gamma) \).

- Preferences are defined over the consumption aggregate

\[C_{h,t} = (x_{h,t})^\alpha (y_{h,t})^{1-\alpha} \quad \text{and} \quad C_{f,t} = (x_{f,t})^{1-\alpha} (y_{f,t})^\alpha \]
Setup of Colacito and Croce economy

- Agents have risk-sensitive preferences

\[U_{i,t} = (1 - \delta) \log C_{i,t} + \delta \theta \log E_t \exp \left\{ \frac{U_{i,t+1}}{\theta} \right\}, \quad \forall i \in \{h, f\} \]

where \(\theta = 1 / (1 - \gamma) \).

- Preferences are defined over the consumption aggregate

\[C_{h,t} = (x_{h,t})^\alpha (y_{h,t})^{1-\alpha} \quad \text{and} \quad C_{f,t} = (x_{f,t})^{1-\alpha} (y_{f,t})^\alpha \]

- Consumption bias: \(\alpha > 1/2 \).
Setup of Colacito and Croce economy

- Agents have risk-sensitive preferences

\[U_{i,t} = (1 - \delta) \log C_{i,t} + \delta \theta \log E_t \exp \left\{ \frac{U_{i,t+1}}{\theta} \right\}, \quad \forall i \in \{h, f\} \]

where \(\theta = 1 / (1 - \gamma) \).

- Preferences are defined over the consumption aggregate

\[C_{h,t} = (x_{h,t})^\alpha (y_{h,t})^{1-\alpha} \quad \text{and} \quad C_{f,t} = (x_{f,t})^{1-\alpha} (y_{f,t})^\alpha \]

- Consumption bias: \(\alpha > 1/2 \).

- Complete markets.
Setup of Colacito and Croce economy

- Agents have risk-sensitive preferences

\[U_{i,t} = (1 - \delta) \log C_{i,t} + \delta \theta \log E_t \exp \left\{ \frac{U_{i,t+1}}{\theta} \right\}, \quad \forall i \in \{h, f\} \]

where \(\theta = 1 / (1 - \gamma) \).

- Preferences are defined over the consumption aggregate

\[C_{h,t} = (x_{h,t})^\alpha (y_{h,t})^{1-\alpha} \quad \text{and} \quad C_{f,t} = (x_{f,t})^{1-\alpha} (y_{f,t})^\alpha \]

- Consumption bias: \(\alpha > 1/2 \).

- Complete markets.

- Endowments are i.i.d. homoscedastic
Setup of Colacito and Croce economy

- Agents have risk-sensitive preferences

\[U_{i,t} = (1 - \delta) \log C_{i,t} + \delta \theta \log E_t \exp \left\{ \frac{U_{i,t+1}}{\theta} \right\}, \quad \forall i \in \{h, f\} \]

where \(\theta = \frac{1}{1 - \gamma} \).

- Preferences are defined over the consumption aggregate

\[C_{h,t} = (x_{h,t})^\alpha (y_{h,t})^{1-\alpha} \quad \text{and} \quad C_{f,t} = (x_{f,t})^{1-\alpha} (y_{f,t})^\alpha \]

- Consumption bias: \(\alpha > 1/2 \).

- Complete markets.

- Endowments are i.i.d. homoscedastic

 - \(HL = \{X = 103, Y = 100\} \) and \(LH = \{X = 100, Y = 103\} \)
Allocations

- Find efficient allocations by solving Pareto problem

- Let $k = \frac{\alpha}{1-\alpha}$:

\[
x^h_t = \frac{kS_t}{1 + kS_t} X_t, \quad x^f_t = \frac{1}{1 + kS_t} X_t
\]

\[
y^h_t = \frac{S_t}{k + S_t} Y_t, \quad y^f_t = \frac{k}{k + S_t} Y_t
\]

where

\[
S_t = S_{t-1} \cdot \frac{\delta \exp \{U_{h,t}/\theta\}}{E_{t-1} \exp \{U_{h,t}/\theta\}} \Bigg/ \frac{\delta \exp \{U_{f,t}/\theta\}}{E_{t-1} \exp \{U_{f,t}/\theta\}}
\]
Questions

1. **Does** S_t **move over time?**
Questions

1. **Does** S_t move over time?
2. **How** does S_t move over time?
Questions

1. **Does** S_t move over time?
2. **How** does S_t move over time?
3. **Does** S_t have a non-degenerate long-run distribution?
S_t moves around over time

- **Key result**: the current share of consumption goes

 1. up in "bad times"
 2. down in "good times"

 This means that S_t is decreasing in X_t/Y_t.
S_t moves around over time

- **Key result**: the current share of consumption goes
 1. up in “bad times”
S_t moves around over time

Key result: the current share of consumption goes

1. up in “bad times”
2. down in “good times”
\(S_t \) moves around over time

- **Key result**: the current share of consumption goes
 1. up in “bad times”
 2. down in “good times”

- This means that \(S_t \) is decreasing in \(X_t/Y_t \).
How does S_t move?

![Graphs showing $\Delta \mu_h^{HL}$ and $\Delta \mu_h^{LH}$]
How does S_t move?

\rightarrow Abundant X, scarce Y:
How does S_t move?

→ Abundant X, scarce Y:

→ Good news for home
How does S_t move?

→ **Abundant** X, scarce Y:
→ Good news for home
→ Home Pareto weight ↓
How does S_t move?

HL and LH graphs showing the movement of $\Delta \mu_h$. "\rightarrow Scarce X, abundant Y:"

- Bad news for home
- Home Pareto weight ↑
Does S_t have a non-degenerate long-run distribution?
Does S_t have a non-degenerate long-run distribution?

1. Note that

$$E_t [S_{t+1}] = S_t - \frac{\text{cov}_t \left[\exp \left\{ \frac{U_{t,t+1}}{\theta} \right\}, S_{t+1} \right]}{E_t \left[\exp \left\{ \frac{U_{t,t+1}}{\theta} \right\} \right]}$$
Does S_t have a non-degenerate long-run distribution?

1. Note that

$$E_t[S_{t+1}] = S_t - \frac{\text{cov}_t \left[\exp \left\{ \frac{U_{f,t+1}}{\theta} \right\}, S_{t+1} \right]}{E_t \left[\exp \left\{ \frac{U_{f,t+1}}{\theta} \right\} \right]}$$

2. There exists a $S^*_t < 1$ such that

- $U_{f,t+1}^{HL}(S^*_t) = U_{f,t+1}^{LH}(S^*_t)$;
- $U_{f,t+1}^{HL}(S_t) < U_{f,t+1}^{LH}(S_t)$, if $S_t < S^*_t$;
- $U_{f,t+1}^{HL}(S_t) > U_{f,t+1}^{LH}(S_t)$, if $S_t > S^*_t$;
Does S_t have a non-degenerate long-run distribution?

1. Note that

$$E_t[S_{t+1}] = S_t - \frac{\text{cov}_t \left[\exp \left\{ \frac{U_{f,t+1}}{\theta} \right\}, S_{t+1} \right]}{E_t \left[\exp \left\{ \frac{U_{f,t+1}}{\theta} \right\} \right]}$$

2. There exists a $S_t^* < 1$ such that

- $U_{f,t+1}^{HL}(S_t^*) = U_{f,t+1}^{LH}(S_t^*)$;
- $U_{f,t+1}^{HL}(S_t) < U_{f,t+1}^{LH}(S_t)$, if $S_t < S_t^*$;
- $U_{f,t+1}^{HL}(S_t) > U_{f,t+1}^{LH}(S_t)$, if $S_t > S_t^*$;

3. This means that the covariance changes sign before and after S_t^*. Why?
Difference of continuation utilities

\[
\frac{U_{1,HL} - U_{1,LH}}{U_{2,LH} - U_{2,HL}}
\]
Where is S_t going in the long-run?

- This means that

1. $E_t [S_{t+1}] \geq S_t$, if $S_t \leq S^*_t$;
Where is S_t going in the long-run?

- This means that

1. $E_t [S_{t+1}] \geq S_t$, if $S_t \leq S^*_t$;
2. $E_t [S_{t+1}] < S_t$, if $S_t > S^*_t$;

This prevents μ_h, t from converging to zero!
Where is S_t going in the long-run?

- This means that
 1. $E_t [S_{t+1}] \geq S_t$, if $S_t \leq S^*_t$;
 2. $E_t [S_{t+1}] < S_t$, if $S_t > S^*_t$;

- This prevents $\mu_{h,t}$ from converging to zero!
Pareto weights: expected growth and distribution

$E(\mu' - \mu)$

→ Mean Reversion
Pareto weights: expected growth and distribution

\[\mathbb{E}(\mu' - \mu) \]

Expected Pareto weight change

\[\pi(\mu) \]

Asymptotic Distribution

→ Mean Reversion

→ Symmetric Distribution
Why does S_t move?
Why does S_t move?

Reducing Expected Utility

Reducing Volatility

$E[U_{h,t+1}(s_{t+1}|s_t)]$

$\sigma[U_{h,t+1}(s_{t+1}|s_t)]$

$\gamma = 25$

$\gamma = 1$ (Time Additive Case − No Tradeoff)
Why does S_t move?

Reducing Expected Utility

Reducing Volatility

$\gamma = 25$
Why does S_t move?

Reducing Expected Utility

Reducing Volatility

Trade-off between Expected Utility and Utility Variance
Why does S_t move?

\[
E[U_{h,t+1}(s_{t+1}|s_t)] \quad \sigma[U_{h,t+1}(s_{t+1}|s_t)]
\]

$\gamma = 1$ (Time Additive Case – No Tradeoff)

$\gamma = 25$
Conditional Volatilities

- X/Y
- μ_h
- $V_t(U_{h,t+1})$

Periods
Conditional Volatilities

(periods)
Conditional Volatilities

- X/Y
- μ_h
- $V_t(U_{h,t+1})$

Periods: 0 to 100
Utilities’ correlations

→ **Blue curves**: utilities when supply of good X is high

→ **Red curves**: utilities when supply of good Y is high
Utilities’ correlations

→ **Time additive** preferences:

→ Home utility is high (low) when foreign utility is low (high)
Risk-sensitive preferences:

Must take into account international redistribution of wealth
Continuation utilities including redistribution of wealth

\(U_{t+1} \) as a function of \(\mu_t \)
If wealth is similar:

→ Home utility is high (low) when foreign utility is low (high)
Utilities’ correlations

What if one country is more wealthy than the other?
Utilities’ correlations

→ If wealth is not similar:
 → Home utility is high (low) when foreign utility is high (low)
Correlation of utilities increases with wealth inequality
How good is the approximation of $E_t[\Delta s_{t+1}]$?
How good is the approximation of $V_t[\Delta s_{t+1}]$?
Introducing Rare Events

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>π</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>103</td>
<td>0.2375</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>100</td>
<td>0.2375</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>103</td>
<td>0.2375</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>0.2375</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>60</td>
<td>0.0100</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>60</td>
<td>0.0100</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>0.0100</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>103</td>
<td>0.0100</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>100</td>
<td>0.0100</td>
<td></td>
</tr>
</tbody>
</table>
Introducing Rare Events

Four equally likely no-disaster events

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>π</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>103</td>
<td>0.2375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>100</td>
<td>0.2375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>103</td>
<td>0.2375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>0.2375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>60</td>
<td>0.0100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>60</td>
<td>0.0100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>0.0100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>103</td>
<td>0.0100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>100</td>
<td>0.0100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introducing Rare Events

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>π</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>103</td>
<td>0.2375</td>
</tr>
<tr>
<td>103</td>
<td>100</td>
<td>0.2375</td>
</tr>
<tr>
<td>100</td>
<td>103</td>
<td>0.2375</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>0.2375</td>
</tr>
<tr>
<td>103</td>
<td>60</td>
<td>0.0100</td>
</tr>
<tr>
<td>100</td>
<td>60</td>
<td>0.0100</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>0.0100</td>
</tr>
<tr>
<td>60</td>
<td>103</td>
<td>0.0100</td>
</tr>
<tr>
<td>60</td>
<td>100</td>
<td>0.0100</td>
</tr>
</tbody>
</table>

Five equally likely disaster events
Stochastic Discount Factors

▶ International Stochastic Discount Factors:

\[
\log M_{i,t+1} = \log \delta + \log \frac{C_{i,t}}{C_{i,t+1}} + \log \frac{\exp \{ U_{i,t+1}/\theta \}}{E_t \exp \{ U_{i,t+1}/\theta \}}, \quad \forall i \in \{h, f\}
\]
Stochastic Discount Factors

- International Stochastic Discount Factors:

\[\log M_{i,t+1} = \log \delta + \log \frac{C_{i,t}}{C_{i,t+1}} + \log \frac{\exp \{ U_{i,t+1}/\theta \}}{E_t \exp \{ U_{i,t+1}/\theta \}} , \quad \forall i \in \{ h, f \} \]

- Properties:

1. Volatility is high
2. Volatility is time-varying
3. Correlation is high
4. Correlation is time-varying
Stochastic Discount Factors

- **International Stochastic Discount Factors:**

\[
\log M_{i,t+1} = \log \delta + \log \frac{C_{i,t}}{C_{i,t+1}} + \log \frac{\exp \left\{ U_{i,t+1}/\theta \right\}}{E_t \exp \left\{ U_{i,t+1}/\theta \right\}}, \quad \forall i \in \{h, f\}
\]

- **Properties:**
 1. Volatility is high \(\Rightarrow\) Equity Sharpe ratios are high
 2. Volatility is time-varying \(\Rightarrow\) Equity risk-premia are time-varying
 3. Correlation is high \(\Rightarrow\) Volatility of FX growth is “low”
 4. Correlation is time-varying \(\Rightarrow\) Volatility of FX growth is time-varying
Conditional volatility of SDF

$\sigma_t(M_{h,t+1})/E_t(M_{h,t+1}) \rightarrow \text{Average Volatility} \approx 30\%$
Conditional volatility of SDF

\[
\sigma_t \left(\frac{M_{h,t+1}}{E_t(M_{h,t+1})} \right)
\]

→ Average Volatility ≈ 30%

→ Equity risk-premia

\[
E_t \left[r_{h,t+1}^c - r_{h,t}^f \right] = -\rho_t \left(\Delta c_{h,t+1}, M_{h,t+1} \right) \sigma_t \left(\Delta c_{h,t+1} \right) \frac{\sigma_t(M_{h,t+1})}{E_t(M_{h,t+1})}
\]
Average Volatility $\approx 30\%$

Equity risk-premia

\[
E_t \left[r_{h,t+1}^c - r_{h,t}^f \right] = -\rho_t (\Delta c_{h,t+1}, M_{h,t+1}) \sigma_t (\Delta c_{h,t+1}) \frac{\sigma_t (M_{h,t+1})}{E_t (M_{h,t+1})}
\]

are time varying and counter-cyclical.
Conditional Correlations

\[\text{corr}(\Delta c_t^{f}, \Delta c_t^{h}) \]

\[\mu \text{ corr}(m_{t+1}^{f}, m_{t+1}^{h}) \]
Conditional Correlations

→ Low, time-varying correlation of consumption
Conditional Correlations

- Low, time-varying correlation of consumption
- High, time-varying correlation of marginal utilities
Conditional volatility of FX growth

\[\Delta e_{t+1} = m_{f,t+1} - m_{h,t+1} \]
Conditional volatility of FX growth

\[V_t[\Delta e_{t+1}] = V_t[m_{f,t+1} - m_{h,t+1}] \]
Conditional volatility of FX growth

\[V_t[\Delta e_{t+1}] = V_t[m_{f,t+1}] + V_t[m_{h,t+1}] - 2\rho_t \cdot \sqrt{V_t[m_{f,t+1}]} \cdot \sqrt{V_t[m_{h,t+1}]} \]
Conditional volatility of FX growth

\[V_t[\Delta e_{t+1}] = V_t[m_{f,t+1}] + V_t[m_{h,t+1}] - 2\rho \cdot \sqrt{V_t[m_{f,t+1}]} \cdot \sqrt{V_t[m_{h,t+1}]} \]

\[\sigma_t(\Delta e_{t+1}) \]

\[\mu_h \]

\[\rightarrow \text{ Average Volatility } \approx 14\% \]
Conditional volatility of FX growth

$$V_t[\Delta e_{t+1}] = V_t[m_{f,t+1}] + V_t[m_{h,t+1}] - 2\rho_t \cdot \sqrt{V_t[m_{f,t+1}]} \cdot \sqrt{V_t[m_{h,t+1}]}$$

→ Average Volatility ≈ 14%

→ Time-varying exchange rate volatility
Qualitative implications

1. Inverse relationship between
 ▶ Volatility of exchange rate
 ▶ Absolute level of savings
1. Inverse relationship between
 ▶ Volatility of exchange rate
 ▶ Absolute level of savings
Qualitative implications

1. Inverse relationship between
 ▶ Volatility of exchange rate
 ▶ Absolute level of savings

2. Positive relationship between
 ▶ Volatility of consumption
 ▶ Level of savings
Qualitative implications

1. Inverse relationship between
 - Volatility of exchange rate
 - Absolute level of savings

2. Positive relationship between
 - Volatility of consumption
 - Level of savings
Qualitative implications

1. Inverse relationship between
 - Volatility of exchange rate
 - Absolute level of savings

2. Positive relationship between
 - Volatility of consumption
 - Level of savings
Qualitative implications (cont’d)

3. Inverse relationship between
Qualitative implications (cont’d)

3. Inverse relationship between
 - Volatility of exchange rate

\[\mu_h \sigma_t (\Delta e_{t+1}) \]

\[corr_t(r_{h,t+1}, r_{f,t+1}) \]
Qualitative implications (cont’d)

3. Inverse relationship between
 ▶ Volatility of exchange rate
 ▶ Correlation of returns
3. Inverse relationship between
 - Volatility of exchange rate
 - Correlation of returns
Concluding remarks

A two-countries model with:

- complete markets
- two goods
- i.i.d. endowments
- risk-sensitive preferences

1. generates
 - dynamic risk-sharing scheme
 - endogenously time varying second moments

2. replicates a number of international finance facts

3. introduce frictions and investments