Reputation and Interstate Conflict
(Of Friends and Foes) *

Mark J.C. Crescenzi
Department of Political Science
University of North Carolina
Chapel Hill, NC 27599-3265
cresenzi@unc.edu

June 22, 2006

Abstract

In international politics, states learn from the behavior of other states, including the reputations states form through their actions in the international system. I develop a model of how states process this information and examine how this learning affects international conflict. The model builds off of cognitive balance theory and foreign policy learning models, and breaks new ground in its ability to provide a contextual assessment of reputation in world politics. I then investigate whether a dyad is more likely to experience conflict if at least one of the states has a reputation for hostility. This hypothesis is tested empirically across all dyads in the international system from 1817-2000. The results indicate that states do engage in this learning behavior, and that the information generated by extra-dyadic interaction of states has a significant bearing upon the likelihood of dyadic conflict.

*A previous draft of this paper was presented at the 2003 Annual Meeting of the American Political Science Association, August 28–August 31, 2003. Thanks to Andrew Enterline, Kelly Kadera, Stephen Long and Jake Kathman for comments. Special thanks to George Rabinowitz for his comments and help with data preparation and fortran programming, to Tae Lerch for his help with the Perl program. Empirical analysis was conducted using STATA 8.0 (StataCorp, 2003). Thanks to the COW2 Project and to John Oneal, Bruce Russett, and Michael Berbaum for making their data available. Data assembly was conducted with the help of EUGene 3.0.3 (Bennett and Stam, 2000). The author is grateful to the National Science Foundation for supporting this research (SES-0450111). Any errors remain the responsibility of the author.
Introduction

Shortly after George W. Bush issued his ultimatum against Saddam Hussein’s Iraqi regime to disarm and step down or face war with the United States, North Korea’s Kim Jong Il slipped into a rare level of seclusion. Daily reports of his activities disappeared from North Korea’s official media. In a culture where the primary focus of the society is on the Dear Leader, such an absence of information is highly unusual. It is a short stretch to imagine that leaders in Iran and Syria were paying close attention as well. Indeed, in the immediate “postwar” period the Bush Administration seemed to be counting on the assumption that US actions in Iraq serve as a signal of resolve (Shanker, 2002). As conditions in Iraq unraveled, leaders in North Korea and Iran regained their voice and presence in the news, but what are the enduring lessons that they will take away from the US foreign policy toward Iraq?

Similar examples permeate world politics. The force displayed by the United States in its air campaign against Serbia caught the attention of friends and foes alike. From France to China, governments were forced to appreciate the consequences of divergent defense budgets. Nor should we assume that only violent activities catch the attention of uninvolved parties. Treaties and trade are likely examples of dyadic interstate behavior that is observed by other states in the international system. Of course, this claim that governments observe the behavior of their peers is easy enough to make, and it would seem ridiculous to assume otherwise. But the more important and difficult question to answer is whether and when governments alter their foreign policy behavior based on such knowledge.

In this paper, I identify one dimension of this information, a particular form of reputation that states generate through their actions over time, and then pose the following questions. If this information exists, what do governments do with it? How do state leaders interpret the actions of their friends and foes? For example, does the war between the United States and Iraq influence the North Korean government’s belief that war between the U.S. and
North Korea is coming? More generally, do states alter their behavior with others based on what these other states are doing elsewhere? This broader puzzle is one of both substance and research design. The dyadic level of analysis (pairs of states) has dominated the study of international conflict for the last two decades (Bremer, 1992). It is a natural fit with the parallel theoretical emphasis on strategic interaction, but it is not ideally suited to incorporate information that lies beyond the dyad itself (Bueno de Mesquita, 1981; Fearon, 1994). While we have made progress regarding the dependence of dyadic observations across time (Raknerud and Hegre, 1997; Beck, Katz and Tucker, 1998; Crescenzi and Enterline, 2001), we still have a limited understanding of how dyads are influenced by other states and other dyads. Scholars have recently renewed their focus on spatial interdependence and networks (Signorino, 1999; Heagerty, Ward and Gleditsch, 2002; Ward and Gleditsch, 2002; Hoff and Ward, 2004), but we are only beginning to understand how these phenomena relate back to the dyadic level of analysis. My goal here is to be able to assess the impact of this particular form of reputation on crises between states, so preserving the ability to consider reputation at the dyadic level of analysis is important.

There are two specific pieces of this puzzle to sort out. First, how does a state (or more specifically, its policy makers) process the information contained in international relations where that state is not directly involved? Second, once this information is processed, what do policy makers do with it? Does this information affect the choices made in international politics? I offer a solution to this first piece by modeling one way in which states learn from the behavior that surrounds them. States do consider their opponents’ historical ties with other states, but they weigh carefully the degree to which these other states are similar to themselves. Put simply, the latest US-Iraqi war is more likely to affect the North Korea-US relationship than China-US or or Mexico-US ties (for different reasons). This learning goes beyond a unique trilateral relationship as well. States typically have the resources to observe how their potential partner/opponent behaves with all of the other states in the
international system. They then weigh these histories accordingly to assign a reputation to their partner, and perhaps use this information when forming foreign policy.

Three related perspectives offer solutions to the second piece of the puzzle. Leng (1983, 1988, 2000) provides a platform by delineating an experiential model of direct learning within dyads. The rivalry literature (Diehl and Goertz, 2001) provides a rich conceptual context of viewing dyads as dynamic, evolutionary political arenas. Finally, Crescenzi and Enterline (2001) develop a flexible model of direct historical learning within dyads that can be expanded to address extra-dyadic learning. Here I build off of this platform to incorporate reputational learning into this dynamic relationship framework.

Once the theory is established, I operationalize this model using data on conflict history (Crescenzi and Enterline, 2001), foreign policy similarity (Signorino and Ritter, 1999), and power similarity (Singer, Bremer and Stuckey, 1972) to empirically test the hypothesis that a state is more likely to fight an opponent that has engaged in conflict with that state’s peers. Admittedly, this hypothesis is merely a partial representation of the broader question of reputation and foreign policy behavior, but it is an important piece and a good place to begin evaluating the model developed below. This empirical analysis strongly supports the notion that states are indeed paying close attention to the way their potential enemies treat their friends. When states face opponents that are historically hostile towards other, similar countries, militarized conflict is more likely to occur.

Background

In the scientific study of international politics, researchers frequently assume that dyadic interactions are independent across space, whether we define space in terms of geographic or relational qualities. That is, one pair of states, or one dyad, is usually treated as independent from other states, dyads, and institutions. Clearly, we are aware of the problems associated with this assumption. Scholars have long been aware of the importance of studying world
politics beyond the basic dyad-year unit of analysis (Deutsch, 1954). The assumption is not made out of ignorance, it stems from challenges associated with theoretical clarity and research design.

Within the dyadic level of analysis (which has dominated the scientific study of international processes for the last two decades), researchers have primarily been preoccupied with the equally important problem of temporal dependence (the problem of treating an observation of a dyad in one year as independent from observations in prior or subsequent years). While great progress has been made toward solving the problems associated with temporal interdependence, issues of research design have forced the assumption of spatial independence to remain in much of the extant empirical research. Over the last thirty years, explicit research dealing with spatial interdependence has typically been at the systemic level of analysis.

Relaxing the assumption that the dyads in the international system are independent from each other has been an infrequent but repeated exercise. Richardson (1960), for example, developed a model of arms races capable of capturing N-nations. Deutsch (1954) understood the spatial interdependence of the international community well. Schrodt and Mintz (1988) conceptualized spatial interdependence as a conditional probability problem. Others have used Richardson’s N-nation model to study the qualities of balance and stability in the structure of the international system (Schrodt, 1978). The problem of structure (polarity) and stability in the international system has driven most of the research that considers extra-dyadic information and international conflict (Lee, Muncaster and Zinnes, 1994; Zinnes and Muncaster, 1997). Ultimately, these works are focused on the overall stability and peace in the international system, and they remain accordingly at the systemic level of analysis.

The study of contagion is a second example (Levy, 1982; Houweling and Siccama, 1985; Most and Starr, 1989; Siverson and Starr, 1991; Kadera, 1998). War contagion, or diffusion, is the notion that as war breaks out it tends to draw other countries into its grasp. Conflict
begets conflict, and the effect is spatial rather than temporal. But the logic of war contagion or diffusion is that the spread of war is rather immediate and directly associated with an original conflict. Of immediate importance to this literature is the understanding of how war can spread to a systemic war like the World Wars.

Recently, the focus has been on the problem of temporal dependence in the dyad-year research design (Beck, Katz and Tucker, 1998; Raknerud and Hegre, 1997; Crescenzi and Enterline, 2001; Russett and Oneal, 2001). Intuitively we know that historical behavior between two states is likely to influence present and future behavior between these same actors. Solutions to this problem have either focused on treating this temporal dependence as noise in the data to be corrected for (Beck, Katz and Tucker, 1998) or as a theoretical explanation for conflict (Crescenzi and Enterline, 2001; Diehl and Goertz, 2001). All of these studies save Raknerud and Hegre preserve the assumption that each unique dyad in the international system is independent from the others. Since the initial round of research by Raknerud and Hegre (1997) and Beck, Katz and Tucker (1998), dealing with temporal dependence in the dyad-year research design has become a standard issue.

More recently, the problem of spatial interdependence has been embraced by political methodologists. Beck and Katz (1995), Heagerty, Ward and Gleditsch (2002) and Ward and Gleditsch (2002) clearly identify the problem of treating dyads independently. Their approach differs from mine in that they utilize geographic space as a proxy for the complexities of spatial interdependence while I speak of the spatial dimension in terms of behavioral relationships. The two dimensions likely overlap, and both provide meaningful information to the study of dyads. For example, in a renewed focus on the spatial diffusion of war, Ward and Gleditsch (2002) attempt to fix the problem of spatial interdependence by incorporating information about war involvement of proximate states. Heagerty, Ward and Gleditsch

1Raknerud and Hegre (1997) also consider the problem of contemporaneous spatial diffusion, such as war with a third country.
(2002) warn that ignoring the problem of spatial interdependence can lead to erroneous empirical findings and jeopardize the predictive capabilities of current empirical models.

Finally, the concept of learning and adaptation has a long-standing presence in the study of international relations (e.g., Jervis, 1976; Dixon, 1983; Leng, 1983, 1988, 1993, 2000; Huth, 1988; Maoz, 1990, 1996; Snyder, 1991; Levy, 1994; Reiter, 1996; Farkas, 1998; Press, 2005). Learning is a key component of the model I present below. Specifically, I will focus on learning that is *experiential* in that states learn from the experiences and behavior of other states; it is *diagnostic* in that states use the experiences of others to update their beliefs about the intentions of others; and it is *vicarious*, or diffuse, in that states learn from experiences in which they are not directly involved (Jervis, 1976; Leng, 1983; Levy, 1994).

Research on learning in foreign policy most frequently is concerned with direct experiential learning at the state and dyadic levels of analysis. For example, Dixon (1983) examines the dynamic, historical sources of affect and their impact on Cold War ties between the United States and the Soviet Union. Reiter (1996) looks at how formative events help states learn about alliances. Snyder (1991) considers how great powers learn and adjust to their early mistakes of overexpansion. Leng (1983) and Crescenzi and Enterline (2001) demonstrate that dyads learn from earlier crises within the dyad and become more bellicose with each other in subsequent crisis situations. Leng (1993, 2000) delves deeply into the dynamic interplay within dyads during crises to understand when states choose dangerous bargaining strategies. All of these studies identify patterns of learning. None of these studies address the ability of states to learn from the indirect behavioral history of their dyadic partners.

Like most research on learning and conflict (see esp. Reiter, 1996), my research is incompatible with pure neo-realist theories of world politics (Waltz, 1970). I explicitly argue that states rely upon information other than relative power levels to assess their strategies in crisis situations. I also adopt the structure of the well established two-stage learning→foreign policy process: (1) learning from observation and interpretation leads to updating; and (2)
this updating may influence foreign policy behavior (Jervis, 1976; Levy, 1994, p.291). The reputation information model is a model of this first stage, and it is a conceptual model of the learning process. My hope is to generate a model that uniquely captures the first stage while allowing researchers to apply it to multiple causal analyses that fit in the second. The causal link between learning and foreign policy decision making must be grounded in the type of political behavior that is being explained.

Stage One: How do States Learn from Extra-dyadic Information?

Beginning with the first stage of the learning–foreign policy linkage (interpreting extra-dyadic information), three lines of research within the field of international relations stand out as particularly instructive for this project. What separates them from other studies of interstate politics is their willingness to assume that either all third parties can affect the dyadic international relationship and/or that this influence is not limited to war-time activity. Schrodt and Mintz (1988) develop the simple logic of how states update information about other states based on behavior outside the dyad. This research pioneered the focus on spatial interdependence in empirical research. Their underlying logic of this interdependence was a function of chain reactions represented by conditional probability. Events that transpired between two states influenced events involving one of these states with additional countries. The process repeats indefinitely, but at each stage it is based on the observance of dyadic behavior.

Secondly, Goldstein and Freeman (1990) examine an explicit three-way relationship between the U.S., China, and the Soviet Union. Their work is unusual in that it recognizes that states look beyond the dyad in typical political interaction; not only during times of war. The research is focused, however, on the triadic relationship of these three particular states, and the authors use an inductive approach to teasing out the complex interactions.
Thirdly, Lee, Muncaster and Zinnes (1994, 336) introduce an important insight regarding how states may learn from the behavior of other states. Using Heider’s rule, they establish a simple basis for interpreting state behavior (Heider, 1946; Harary, 1959):

\[
\begin{align*}
\text{The friend of my friend is my friend}, \\
\text{the friend of my enemy is my enemy}, \\
The enemy of my enemy is my friend, \\
The enemy of my friend is my enemy.
\end{align*}
\]

Heider’s early work on attitude formation and attraction was further clarified by Harary, Norman and Cartwright (1965) and Newcomb (1953, 1961) to form the basic logic of cognitive balance theory. Heider’s rule represents a folk interpretation of the logic behind balance theory. Balance theorists were concerned with the ability of the self (Heider) or the ability of groups (Harary, Norman and Cartwright) to reconcile relationships that were unbalanced. Using the classic logic of the $p-o-x$ triad, the theory focuses on the calculations of person P concerning his/her relationship with some other person O. Both P and O have a relationship or level of attraction to object X. P evaluates O’s relationship with X in light of its own relationship with X. If the two individuals share a consistent attraction (or lack thereof) with X, the $P-O$ dyadic relationship is said to be balanced. If their feelings toward X are inconsistent, however (e.g., P likes baseball but O does not), the relationship is unbalanced and a fundamental tension results. For Heider, this tension was internal to P, as P grapples with how the inconsistency should manifest itself in the overall level of attraction within the dyad (is O’s dislike of baseball enough to cause them to not be friends?). The focus is on the dyadic $P-O$ relationship, and Heider and Newcomb assumed that there existed a basic desire for harmony over tension. Critics of cognitive balance theory cite its myopic focus on triads as too simple to account for the complexities of group dynamics, as well as its basic

\[\text{2}X \text{ may also be a third individual.}\]
qualitative assessment of relationships (+ or -) as too vague to produce accurate forecasts of social behavior.3

This basic logic of cognitive balance theory, combined with the triadic interaction models found in Schrodt and Mintz (1988) and Goldstein and Freeman (1990), inform the learning model that I propose here. I require a model of learning that captures the dynamics of these triadic interactions but then reduces this information to the state and dyad levels of analysis, because what I am eventually looking for is an expectation of dyadic behavior. The triadic mechanics of balance theory represent well the basic calculations, but I assume a different motivation for the actors involved. States are less concerned with the problems associated with balance, and more concerned with the problems associated with perception and lack of information. Extra-dyadic information is a valuable source of information about the intentions, reputation, and credibility of one’s dyadic counterpart. States use other states as proxies to get a sense of what their dyadic partner would do in situations such as a crisis. An additional difference is that states assess the information available from all the possible other states in the system, but still must remain focused on the primary dyadic relationship, so some sort of aggregation will be required.

There are two components of the learning model to represent: information about extra-dyadic behavior and the relevance of that behavior. Figure 1 illustrates the components of this information dynamic. The top arrow connecting A and B is the information A seeks; an expectation of behavior by B toward A. The source of this information is two-dimensional. The behavior–information component is straightforward. Given three countries, A, B and C, A can process information about B by looking at how B has historically interacted with C. I assume further that states weight this information from the extra-dyadic behavior of

3Cognitive balance theory has taken its lumps, but primarily as a theoretical explanation for group structure within social network theory. It appears to be enjoying a bit of a renaissance (see Hummon and Doreian, 2003) with a renewed focus on the internal tension (Heider) variant.
other states. That is, A weights this information based on how similar it is to C. The more similar A and C are the more A is able to treat C as a useful proxy for information. These weights determine the relevance of the BC relationship to A. If there is anything tricky about this setup, it is the argument that A weights the historical interaction within the BC dyad with a relevance comparison between A and C to learn about potential future interaction within the AB dyad. Since I assume state leaders are non-myopic in their search for information, I assume that A looks at all of the possible C states in the international system when searching for good proxies. A then aggregates this information in some fashion to gather an overall expectation of B’s behavior.

[Figure 1 About Here.]

For this model, I focus on foreign policy and power characteristics to represent proxy value. Foreign policy similarity is one comparison characteristic used by A to determine how useful C is as a proxy.\(^4\) The more similar the foreign policy portfolios of A and C, the more stock A places in the information coming from the BC dyad. Dissimilarity between A and C is important too. Heider’s rules stipulate that “the enemy of my enemy is my friend”, so if B demonstrates hostility towards C but C’s foreign policy portfolio is dissimilar from A’s, A may treat this as positive information about B.

Relative power is another important relevance characteristic (Kadera, 2001; Waltz, 1979). For instance, small states learn more from the way their opponents treat other small states than they do from the way their opponents treat major powers. More generally, when A assesses the way its opponent B treats C, it weights B’s behavior based on the power similarity between A and C. Similar power characteristics between A and C inform A that what B does to C it can also do to A. Conversely, as the disparity of power between A and C increases, the BC dyad becomes a less useful source of information for A.

\(^4\)For example, Bueno de Mesquita (1981) uses foreign policy similarity to help determine the expected utility of conflict.
For simplicity, I label this the Reputation Information (RI) model. The use of the term “reputation” refers simply to the vicarious experiential dimension of the information being processed (i.e., there is no direct interactive history between A and B used to form this information). Clearly, this is not the only form of reputation in world politics, but it is a form of reputation. Equation 1 formalizes this discussion:

\[
RI_{abN} = \frac{\sum_{c \neq a,b} \rho_{bc} \phi_{ac} \psi_{ac}}{N - 2}
\]

where \(N \) is the size of the system \\
\(\rho_{bc} \) is the relationship between \(B \) and \(C \), \(\rho_{bc} \in (-1, 1) \) \\
\(\phi_{ac} \) is the policy similarity between \(A \) and \(C \), \(\phi_{ac} \in (-1, 1) \) \\
\(\psi_{ac} \) is the power similarity between \(A \) and \(C \), \(\psi_{ac} \in (0, 1) \).

The three variables in the model, \(\rho_{bc}, \phi_{ac}, \) and \(\psi_{ac} \) capture the extra-dyadic relationship and the qualities of policy and power similarity, respectively. Together, their product is the weighted information that \(A \) seeks regarding \(B \)’s extra-dyadic behavior. This product is calculated for every state \(C \) in the international system besides \(A \) and \(B \). The products are then aggregated and normalized for system size. \(RI_{abN} \in (-1, 1) \), where one indicates \(B \)’s extra-dyadic behavior is perfectly compatible with \(A \), and negative one indicates perfect incompatibility. Normalizing in this fashion not only brings the aggregated products within the intuitive -1 to 1 range, it allows us to compare scores across different system sizes. The model is set up such that zero values for any of the variables for a given \(ABC \) observation indicates no useful information can be gathered from that extra-dyadic interaction.\(^5\) This simply means there is nothing to be learned from this particular interaction, but it does not

\(^5\)For example, a value of zero for \(\rho_{bc} \) indicates a neutral or non-existent extra-dyadic relationship between \(B \) and \(C \). A value of zero for \(\phi_{ac} \) indicates that the foreign policy portfolios for \(A \) and \(C \) are neither similar or dissimilar, they are simply unrelated. A zero value for \(\psi_{ac} \) indicates that \(A \) and \(C \) are completely dissimilar in terms of their power. In all three cases, the value of the information that \(A \) gleans from this particular \(BC \) relationship is zero.
mean that the aggregate score \((RI_{abN})\) is also zero (unless all of the ABC observations are zero).

The \(RI\) model captures the essence of learning from \(B\)'s ties with other states, and it reflects the core logic of Heider’s rule. For example, when \(\rho_{bc} > 0\) and \(\phi_{ac} > 0\), the model corresponds to “the friend of my friend is my friend” (see Figure 2). When \(\rho_{bc} < 0\) and \(\phi_{ac} > 0\) then \(A\) gets information about \(B\) that is akin to “the friend of my enemy is my enemy” (see Figure 3). If \(\rho_{bc} < 0\) and \(\phi_{ac} < 0\), the model reflects “the enemy of my enemy is my friend”. Similarly, \(\rho_{bc} > 0\) combined with \(\phi_{ac} < 0\) suggests “the enemy of my friend is my enemy”.

The model is also more subtle and informative than Heider’s rule and cognitive balance theory. It captures the degree of relevance for each proxy state, as well as the degree of hostility or cooperation between the proxy state and the dyadic counterpart. This ability to compare relative cooperation and conflict addresses one of the long-standing criticisms of balance theory that its qualitative formulation is too simple. The power similarity dimension adds further nuance to the learning model, allowing states to filter this information based on the capability similarity of a proxy state, regardless of its foreign policy similarity. Note also that this model is directional: \(RI_{abN}\) and \(RI_{baN}\) need not be equal.

The functional form of the model is designed to emphasize the interaction of the individual components. The extreme regions of the calculation for each combination of \(A\), \(B\), and \(C\) states \((-1,1)\) can only be reached when all three components \((\rho_{bc}, \phi_{ac}, \text{and } \psi_{ac})\) are at their extremes. Zero values for any component reduce the value of the calculation to zero. Thus, zero is designed to reflect the notion of neutrality, or a lack of behavioral or relevance information.

The reputation information model satisfies the need to capture the behavioral and rela-
tional components of extra-dyadic learning. It reflects an explicit set of assumptions about how states learn, assumptions that are derived from previous research on learning and cognitive balance theory. Yet the model goes beyond these roots to provide a novel perspective on how we understand the process of learning from extra-dyadic activity. While it serves as a basic platform for research, it is not intended to represent the *only* form of learning for states. Certainly there are others, some complimentary and some that may overlap with this representation. Ultimately, the question of how useful this model is as a representation of state learning must be answered through empirical application. In this vein, the next section provides a discussion of the causal linkage between learning and conflict, with an empirical examination that puts the *RI* model to the test.

Stage Two: The Impact of Reputation on Dispute Onset

With this first stage of the learning–foreign policy linkage in place, I now turn to the second stage of the process: the causal impact of this particular type of learning on foreign policy. Specifically, I wish to understand how this reputation information affects the onset of militarized disputes at the dyadic level. The issue of how or whether reputation matters is unresolved. The classic wisdom on the matter comes from Schelling (1960; 1966), who argues that a reputation for violence, or “toughness”, can deter potential enemies from using force (see also George and Smoke (1974); Huth and Russett (1984)). Schelling’s argument was that one’s reputation for being fearsome and aggressive would give the enemy pause. This basic notion of using one’s reputation as a signal of resolve fuels the basic deterrence argument. Not everyone buys into this idea, however. Press (2005) argues that in times of crisis leaders shed the baggage of reputation and history and focus almost exclusively on the current crisis. For Press, the question is one of whether or not reputation matters. I am concerned also with the question of *how* it matters.

Three lines of research are useful in explicating an argument for how the information
gleaned from reputation affects the onset of interstate conflict. Leng (1983) provides an important theory of experiential learning in the context of direct dyadic interaction. His Experiential Learning–Realpolitik (ELR) model of crisis bargaining assumes that states learn from their experiences in prior crises. A coercive historical experience leads to an increased probability of employing more coercive bargaining tactics in the future. After careful empirical work, Leng concludes that “coercion begets coercion” (1983, 412). Leng’s ELR model is echoed in the study of rivalry and conflict (Diehl and Goertz, 2001). Rivalry scholars do an excellent job of conceiving of a dyad as a dynamic, historically dependent entity. While the learning mechanism is not explicit, states within a rivalry dyad are constrained by the experiences of past violence when dealing with current crises. The accumulation of hostility becomes a key component to the rivalry’s fundamental relationship. Once again, in rivalries conflict begets conflict. Finally, Crescenzi and Enterline (2001) present a model of the dyadic historical relationship that is experiential and cumulative. The model is in line with Leng’s crisis learning patterns and rivalry theories in its assumption that conflict in the past leads to higher probabilities of conflict in the future, but it also broadens this argument to a more general treatment of the historical relationship.

The basic logic outlined in these three works may hold for vicarious experiential learning as well. I also assume, however, that just as conflict begets conflict, cooperation begets cooperation (Crescenzi and Enterline, 2001; Crescenzi, Enterline and Long, 2005). States that observe their dyadic partners as historically conflictual with similar proxy states will be more likely to resort to the use of force in times of crisis. At the same time, however, states that observe their dyadic partners as historically cooperative with proxy states will be less likely to use force.

6In Leng (1988) the model is referred to as REL, but the argument is consistent and even more logically robust. Leng (1993, 2000) also deals explicitly with experiential learning within the dyad, particularly for enduring rivals. He finds that while this learning can be constrained by realpolitik beliefs, it occurs regularly in enduring rivalries.
Both arguments are fueled by the following logic. In the absence of complete information, states are forced to generate expectations about the behavior of other states. One possible learning schema for generating these expectations is to observe how other states behave in similar situations and use this observation as a precedent, or prior, for the current situation. In times of crisis, a state will observe how its opponent has behaved in similar crises throughout history both within and outside of the dyad. This past behavior sets the stage for bargaining tactics, expectations, and ultimately the decision to use force. Rather than setting the stage for deterrence through toughness, however, a state’s past behavior may signal its willingness or ability to commit to a negotiated settlement in times of crisis. Evidence of past conflict can be considered evidence of failures to navigate crisis waters peacefully. States that are unable to commit to peace in the past may be more likely to fail to do so in the future as well (Powell, 2006). If this is true, then a reputation for violence will increase the probability of the onset of new violence in a crisis, as states who perceive these reputations will have a harder time compromising in settlement attempts and trusting their opponents. Similar to the arguments made in the work by Leng, Diehl & Goertz, and Crescenzi & Enterline, the testable conclusion from this discussion is that (reputational) violence begets violence.

These arguments are stated explicitly in the following hypothesis:

Hypothesis 1 The likelihood of militarized conflict between two states increases as RI_{abN} becomes more conflictual (decreases).

This hypothesis establishes the expected qualitative relationship between reputation information and conflict. The next section details the research design and analysis of the causal relationship between this extra-dyadic information and the onset of militarized conflict.
Data & Method

I use a semi-parametric Cox event history model to test the above hypothesis. The focus here is on modeling the hazard rate of an event. In this case, the event, or hazard, is the onset of a militarized dispute (Jones, Bremer and Singer, 1996). As such, the dependent variable is the survival time, or the accumulation of time without the onset of a militarized dispute. Event history models help us understand the factors that hasten or delay such events. The Cox model is adept at assessing rare events, such as the incidence of militarized conflict. Recently, the Cox model has emerged as the tool of choice when using event history models, due to its parsimonious demands and flexibility handling time-varying covariates (Box-Steffensmeier and Jones, 1997). The data contain observations from all dyad-years from 1817 to 2000, with subsets of this sample used to conduct robustness checks of the results.

The Primary Independent Variable: \(RIS_c\)

The causal variable of interest, of course, is an operationalization of the \(RI\) model specified in Eq.1. There are three pieces of the model that can be measured using current data. The first piece, \(\rho_{bc}\), reflects the historical relationship between states \(B\) and \(C\). I use the \textit{Interstate Interaction Score} (\(IIS_{bc}\)) to measure this historical relationship (Crescenzi and Enterline, 2001). This score measures the behavioral history of hostility between two states. In this study I am using a modified \(IIS\) measure that incorporates the change in joint IGO membership as an indication of cooperation. The measure has the potential range of -1...
(maximum historical hostility) to 1 (maximum historical cooperation), and an actual range of -0.94 to 0.42. The only other theoretically informed option is the categorical data on enduring rivalries (Diehl and Goertz, 2001). Issues concerning research design, however, preclude the use of enduring rivalry data to inform an independent variable at the dyad-year level of analysis when conflict is the dependent variable.

For the second piece of the model, ϕ_{ac} represents the foreign policy similarity between states A and C. The Signorino and Ritter (1999) S-Similarity Score is a natural fit here.9 The S score ranges from completely similar to completely opposite foreign policy portfolios (1 to -1).

Finally, the third piece of the model (ψ_{ac}) requires information about the power similarity between states A and C. For this piece I have adapted the standard Composite Indicator of National Capabilities (CINC) scores slightly (Singer, Bremer and Stuckey, 1972). Since I am concerned primarily with power similarity, I use a capability similarity score defined as $1 - |CINC_a - CINC_c|$. The measure ranges from perfectly symmetric (1) to completely asymmetric (0) power. The use of CINC scores to operationalize this piece of the model is imperfect, as alternatives such as GDP per capita can be more attractive. Because of the need to use a consistent measure across the entire time-frame of the data, however, the use of the CINC scores is necessary.

Together the three components fit into the measure for the RI model, as specified in equation (2). To keep the model and measure distinct, I label the measure $RISc$ (or RI Score).

9An alternative would be to use the τ^B measure (Bueno de Mesquita, 1981). The S score is a mathematical improvement over the τ^B, and there is some evidence that it performs better in empirical situations as well (Bennett and Rupert, 2003).
\[RIS_{cabN} = \frac{\sum_{c \neq a,b} IIS_{bc} S_{ac} C_{ac}}{N - 2} \] (2)

where
- \(N \) is the size of the system
- \(IIS_{bc} \) is the Interstate Interaction Score between \(B \) and \(C \)
- \(S_{ac} \) is the \(S \) Similarity Score between \(A \) and \(C \)
- \(C_{ac} \) is the Capability Similarity Score between \(A \) and \(C \)

The variable is generated in the directed dyad format, which treats the \(\overrightarrow{AB} \) and \(\overrightarrow{BA} \) dyads as distinct. In order to use \(RIS_{cabN} \) in the non-directed dyad research design, I select the smaller (more negative) of the two scores to represent the most extreme information available: \(RIS_{cabN}(\text{min}) = RIS_{cabN} \) if \(RIS_{cabN} < RIS_{cbaN} \), and \(RIS_{cabN}(\text{min}) = RIS_{cbaN} \) otherwise.\(^\text{10}\)

Additional Causal Variables: Controlling for Opportunity and Willingness

In order to assess the performance of the independent variable of interest, I include a set of control variables designed to account for alternative explanations of dispute onset. That is, before we can understand the role of extra-dyadic information on dispute onset, we need to identify and control for the well established causal factors associated with the phenomena of militarized conflict. These control variables fall in to two categories: controlling for opportunity and willingness (Most and Starr, 1989). Three variables representing capability and contiguity account for the opportunity to engage in conflict. Four variables are included to account for fundamental issues of willingness: the direct historical relationship, alliance behavior, the democratic peace, and foreign policy similarity (all at the dyadic level of analysis). Clearly there are other options available for control variables (e.g., trade, institutions, power shifts, etc.), but there is also a renewed focus on limiting the number of explanatory

\(^{10}\)The models below were also run with both directed dyad variables included as independent variables, producing compatible results.
variables in econometric models (Achen, 2005; Clarke, 2005; Kadera and Mitchell, 2005; Ray, 2005). I have chosen to include what I believe to be fundamental alternative causal mechanisms that need to be controlled for, and in a subsequent robustness check I include additional variables using a working econometric model developed by Oneal, Russett and Berbaum (2003).

Three control variables serve to capture the opportunity of states to engage in disputes. The first two variables concern the capability of a state to fight its rival given the willingness to do so. Capability is represented in the standard fashion, taking the log of the ratio of the CINC scores for the two states (with the larger CINC score in the numerator).11 As such, this variable accounts for the relative ability of states to escalate crises to the militarized level, with the parity being more dangerous than preponderance (Bremer, 1992). In addition, I include a dummy variable for all minor-minor powers in order to control for dyads that have power parity but neither state has much absolute capacity to engage in conflict (Senese, 2005).12 The final opportunity dimension, contiguity, is represented using the Contiguous variable. For this dummy variable, a score of one represents any level of contiguity, while zero represents non-contiguity.13

Four control variable capture alternative sources of willingness to engage in disputes. The historic relationship within the dyad is measured using the Interstate Interaction Score (IIS_{ab}).14 This variable controls for previous hostility between A and B that may overwhelm the influence of extra-dyadic information. I include this information as a control for testing hypothesis one in two ways. The IIS score is included as an independent variable as one would expect, but I am also including an interaction term for the IIS and $RISC_{ab}$ scores.

11Version 3.0.2 of the National Material Capabilities data set was used to generate this variable. See Singer, Bremer and Stuckey (1972).
12Major/Minor powers data from COW (2005) were used to generate this variable.
13Version 3.0 of the Direct Contiguity data set was used to generate this variable (Stinnett and Gochman, 2002). An alternate specification restricting contiguity to mean borders within 150 miles of each other produced similar results.
14Note this is different than the IIS_{bc} information used to calculate $RISC_{ab}$
Previous research on historical relationships and rivalries suggests that the direct historical relationship between two states is crucial to their propensity to use force (Crescenzi and Enterline, 2001; Diehl and Goertz, 2001). While I expect reputation information to have an independent impact on conflict, I also expect this impact to be stronger when dyads have a meaningful direct behavioral history. In order to test this argument I interact the RISc and IIS variables. The interaction variable has a range of -.01 to 0.23. Values increase when either component variable moves away from 0, as long as the other component is not zero.

Alliance behavior is needed to control for institutional affiliations between A and B that may inhibit conflict or make it less desirable by both parties (Gibler and Sarkees, 2004). It is measured with the Alliance variable, a dummy variable where 1 represents an alliance between A and B. All forms of alliances are aggregated in this measure. The Regime Score variable captures the dyadic democratic peace effect on conflict, using a standard “weak link” approach that reports the lowest Polity score for each dyad/year. Finally, the S-score accounts for foreign policy similarity between A and B, thereby controlling for similar behavior across the dyad that may account for the expected utility of conflict (Bueno de Mesquita, 1980; Signorino and Ritter, 1999).

Results

The results of the initial hazard analysis are reported in Table 1. Model 1 provides a baseline null model. Model 2 simply assesses the role of reputation information on the likelihood of dispute onset across all possible dyads from 1817–2000. The coefficient estimate for RISc is negative and statistically significant, indicating that conflict is more likely when RISc decreases (B has hostile ties with countries similar to A) and less likely when RISc increases.

See Bueno de Mesquita et al. (1999) and Russett and Oneal (2001) for discussions of why the democratic peace has an impact on conflict. The Polity variable from the Polity IV data set was used for this calculation (Marshall and Jaggers, 2000).
Model 3 presents a more thorough test, as it includes the control variables into the analysis (again, all dyads, 1817–2000). Even with this inclusion of alternative explanations for the incidence of disputes, the $RISc$ relationship variable has a negative, statistically significant coefficient.

[Table 1 About Here.]

Before pushing the discussion of the $RISc$ parameter results too far, however, it is important to evaluate the interaction term ($RISc*IIS$) in conjunction with the individual parameter estimates. Braumoeller (2004) points out the dangers of ignoring the interaction term when interpreting results, and he emphasizes the need to evaluate the dynamics of the parameter estimates across the range of interaction. Using a diagnostic tool developed by Braumoeller to refocus the interpretation of the impact of reputation on dispute onset, Figure 4 informs us of the variance of the $RISc$ parameter across the possible values of IIS. The results suggest that for the vast majority of the values of IIS in the sample, the correct interpretation of the $RISc$ parameter is that a reputation for violence increases the likelihood of dispute onset.

[Figure 4 About Here.]

Figure 5 visually demonstrates the substantive impact of the $RISc$ variable on the hazard of dispute onset. The graph contains two lines consisting of the predicted hazard rate of dispute onset across the age of the dyad (in years).\(^\text{16}\) I have created a dummy variable to split the data into observations where the $RISc$ variable is negative vs. positive or zero. The idea here is to separate out the dyad-years where a conflictual reputation exists vs. years where this reputation information is neutral or positive. The solid line reflects the hazard rate predicted hazard for dyads when $RISc$ is positive or zero. The dashed line reflects

\(^{16}\text{These graphs are produced using the coefficient estimates from Model 3 in Table 1.}\)
the predicted hazard for dyads when \(RISc \) is negative. Dyads with negative (conflictual) reputation information are consistently and considerably more vulnerable to disputes than dyads that have neutral or positive (cooperative) reputation information. The summary interpretation of Table 1 and Figure 5 is that hypothesis one is supported: dyads with conflictual reputation information are at a higher risk for militarized dispute onset.

[Figure 5 About Here.]

Robustness Checks

One drawback to the Cox model is that it assumes all the covariates influence the hazard of conflict consistently across time. This proportional hazards assumption is difficult to maintain over long periods of time (1817-2000 being no exception here). All of the independent variables in model 3 of Table 1 violate this assumption (except \(Alliance \)). Two additional sets of analyses are used to compensate for the existence of nonproportional hazards. First, I have re-run model 3 from with each covariate (except \(Alliance \)) interacted with \(ln(t) \) to correct for non-proportional hazards (Cleves, Gould and Gutierrez, 2002).\(^{17}\) Due to the large proportion of covariates that violate the proportional hazard assumption, I have also estimated one time-interacted covariate at a time. Including all of the time-interactions at once runs the risk of imposing multicollinearity in the model. Adding one interacted variable at a time is a common procedure for coping with nonproportional hazards (Cleves, Gould and Gutierrez, 2002, see Ch.11).\(^{18}\)

The addition of the time-interacted covariates has an interesting impact on the original model. Generally, the \(RISc(t) \), \(IIS(t) \) and \(Contiguous(t) \) covariates are statistically significant. It appears that the original model underestimates the initial impact of \(RISc \), and

\(^{17}\) The new variables were generated by interacting the independent variables with the natural log of time.\(^{18}\) The results are not reported completely here for space reasons. Please contact the author for this technical appendix.
the impacts gradually diminish over time.\footnote{Very gradually. It would take over 100 years before the initial impact of RISC is completely diminished.} The results also indicate that the impact of contiguity is overestimated early on in the temporal domain, and underestimated later on in the temporal domain. In addition, the results indicate that the effect of the interaction term in model 3 is overestimated early in the temporal domain and underestimated later on. Overall, the results that support hypothesis 1 remain very stable across the two diagnostic analyses.

A second concern with this analysis lies with the large sample size used to fit the parameters of the model. Similarly, the analysis also imposes a fairly parsimonious model upon a large number of dyads in the international system, which suggests the possibility of omitted variable bias. As an initial check, model 3 of Table 1 was re-estimated using only Politically Relevant Dyads (dyads that are either contiguous or containing at least one major power. See Maoz and Russett (1993)). The model was also re-estimated on a post World War II temporal sample (with all dyads and again with only PRDs). In all cases the parameter estimates for the $RISC$, IIS and $RISC*IIS$ variables were consistent with the results in Table 1. I have further attempted to check for these problems simultaneously by running shared-frailty models on small (10%) random samples of the data (Box-Steffensmeier and Jones, 2004; Hougaard, 2000). The frailty models attempt to compensate for the individual risk levels of each dyad (with the idea being that some dyads are more “frail” than others, or susceptible to violence in ways that are not captured by the variables in the model). The random samples also attempt to prevent certain dyads or time periods from driving the results (e.g., World War II dyads) as well as provide a smaller sample from which to estimate the parameters. Once again, in each re-estimation the parameter estimates for the $RISC$, IIS and $RISC*IIS$ variables were consistent with the results in Table 1.\footnote{Full results available from the author.}

A third concern with this analysis lies with a particular alternative explanation. That
is, could this reputation result really be driven by the Cold War alliance dynamics of the NATO and Warsaw Pact alliances? To test for this possibility I re-estimate model 3 with the inclusion of dummy variables for all NATO dyads and Warsaw Pact dyads. The results are unchanged.21

As a final check of the robustness of the results of the original analysis, I include the $RISc$, IIS and $RISc*IIS$ variables in an alternate model specification. For this alternate model, I use Oneal, Russett, and Berbaum’s analysis of the liberal peace (Oneal, Russett and Berbaum, 2003). This is a widely recognized model that is used to investigate causal influences on the onset of militarized disputes, so the reader can refer to the Oneal and Russett and Berbaum work as well as Russett and Oneal (2001) for details regarding the data and the theory behind the model. Instead of using survival analysis, the Oneal and Russett model employs a close cousin, the generalized linear model (GLM), that is similar to logistic regression (with corrections for temporal dependence and panel weights). These alternative models use their 2003 data, which is a sample of all dyad/years from 1885 to 1992. The results of this alternative analysis are presented in Table 2.

![Table 2 About Here.]

Model 1 in Table 2 is similar to the model used in Table 1 of Oneal, Russett & Berbaum with dispute onset as the dependent variable.22 Model 2 incorporates the $RISc$, IIS, and $RISc*IIS$ variables into the original model. The coefficient for $RISc$ is again highly statistically significant and negatively signed, indicating that it reduces the likelihood of dispute

21The parameter for the NATO dummy is negative and statistically significant. The parameter for the Warsaw Pact dummy is statistically insignificant.

22The coefficients reported in Table 1 of Oneal, Russett and Berbaum (2003) are actually averages of multiple distributed lags for each covariate. I instead report the results from a single run of the model without the distributed lags, using the data generously provided by the authors (see http://www.yale.edu/unsy/democ/democ1.htm). I omit the Previous Dispute variable, as it would be undoubtedly captured by the IIS variable, and two variables appear to be the inverse of what is reported in the table. I use Contiguous while the authors use Not Contiguous, and Major Power Involvement instead of Minor Powers, simply because I am using the data as provided on the website. The interpretation is straightforward.
onset between dyads when positive, and increases this likelihood when negative. The dyad’s direct behavioral history (IIS) has a similar impact on dispute onset, and the interactive term is consistent with its impact in the survival analysis above as well. Models 3 and 4 repeat this test using fatal MIDs as the dependent variable.23 All of the other variables remain consistent with the original model (both in sign and statistical significance) with the exception of Joint Membership in IGOs and Allies.24 These results show that even when I include the RISc variable in an alternative model with a different set of control variables, it influences the likelihood of conflict between states in ways that are consistent with the hypothesis.

Conclusion

At the outset, this project sought to establish a more explicit understanding of reputation in world politics. At the same time, there was a need to incorporate the causal impact of this interdependence on dyadic interactions into the predominant research designs of today. Both goals have been achieved, with some interesting lessons learned along the way. Clearly, states observe extra-dyadic behavior and incorporate this information when dealing with intra-dyadic relations. Using third-party states as proxies, states look for precedent and reputation in the extra-dyadic behavior of their dyadic partners. As opponents demonstrate hostility toward these proxy states across time, the likelihood of intra-dyadic conflict increases markedly.

The approach taken here presents a complementary alternative to recent work on spatial interdependence. Rather than correcting for spatial interdependence, I develop a model of one dimension of this phenomena to help us understand how this interdependence influences

23 A *fatal MID* is a militarized dispute with at least one recorded fatality.

24 Both variables keep the same sign but lose statistical significance. The change in the IGO membership coefficient is not surprising, as this data is also used in the operationalization of the *IIS* variable.
dyadic behavior. Certainly there are other causal mechanisms to be explored, and this work should be seen as a part of a broader agenda to uncover these processes. The learning process modeled here is but one of many important phenomena that contribute to the many dimensions of reputation. Collective memberships, group dynamics, regional memberships, and cultural similarities are just some of the other possible sources of this information. There is much work to be done, but hopefully this research will provide a solid foundation for future research.

This research demonstrates the importance of the proxy reputation model in the study of international conflict. It also demonstrates the portability of the measure derived from the model, and the accessibility to scholars in the field. The development of this simple model leads to many new (and renewed) research questions concerning international conflict: Does direct experiential learning outweigh vicarious experiential learning? Do states focus only on congruent foreign policies when identifying useful proxy states to learn from, or does Heider’s “the enemy of my enemy is my friend” dimension hold? Given that this vicarious experiential learning influences state decisions to engage in militarized disputes, does it affect the decision to escalate to war?

The broader empirical results suggest that the presence and relevance of spatial interdependence to the dependent variable does not necessarily indicate problems of omitted variable bias or other econometric woes. Incorporating the reputation model into standard empirical research on the onset of militarized disputes did not significantly alter the previously established roles of phenomena such as the democratic peace. Instead, the empirical research conducted here suggests that spatial interdependence is an important part of a state’s decision calculus regarding conflict, but it is not the only player. Nor does it overlap significantly with other dimensions of this calculus. Its influence on the onset of conflict is unique, and by explicitly modeling it new progress has been made towards a full understanding of what causes conflict to occur.
Figure 1: Modeling Reputation Information

A

Expected Behavior from B to A

B

Similarities between A and C

B’s Past Behavior toward C

C
Figure 2: The Friend of my Friend is my Friend

RI_{ab}>0 also holds when ρ<0 and φ<0
(the enemy of my enemy is my friend)

Figure 3: The Friend of my Enemy is my Enemy

RI_{ab}<0 also holds when ρ<0 and φ>0
(the enemy of my friend is my enemy)
Table 1: Cox Survival Analysis of Dispute Onset

<table>
<thead>
<tr>
<th>Variable</th>
<th>1 1817-2000</th>
<th>2 1817-2000</th>
<th>3 1817-2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIS_{AB}</td>
<td></td>
<td>-13.01***</td>
<td>-13.23***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.82)</td>
<td>(1.46)</td>
</tr>
<tr>
<td>IIS_{AB}</td>
<td>-2.61***</td>
<td></td>
<td>-3.15***</td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
<td></td>
<td>(0.22)</td>
</tr>
<tr>
<td>$RIS_{AB}{*}IIS$</td>
<td></td>
<td>-30.62***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4.31)</td>
<td></td>
</tr>
<tr>
<td>Contiguous$_{AB}$</td>
<td>2.83***</td>
<td>2.78***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.14)</td>
<td></td>
</tr>
<tr>
<td>Capability Ratio$_{AB}$ (logged)</td>
<td>-0.11**</td>
<td>-0.12***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Minor Powers$_{AB}$</td>
<td>-1.33***</td>
<td>-1.29***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
<td>(0.13)</td>
<td></td>
</tr>
<tr>
<td>Regime Score$_{AB}$ (weak link)</td>
<td>-0.004***</td>
<td>-0.003***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>S-Score$_{AB}$</td>
<td>0.30</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.31)</td>
<td>(0.31)</td>
<td></td>
</tr>
<tr>
<td>N (failures)</td>
<td>586,673</td>
<td>660,830</td>
<td>586,673</td>
</tr>
<tr>
<td></td>
<td>(1,998)</td>
<td>(2,386)</td>
<td>(1,998)</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-13,279</td>
<td>-19,665</td>
<td>-13,139.5</td>
</tr>
<tr>
<td></td>
<td>2028.4***</td>
<td>248.9***</td>
<td>2483.6***</td>
</tr>
</tbody>
</table>

Coefficients are presented in log-relative hazard format. Robust std. errors adjusted for clustering on dyad in (). ***=significant at the .001 level, **=.01, *=.05., one-tailed
Figure 4: Parameter Variance for RISC and IIS Interaction
Figure 5: Hazard Estimates by RISc
Table 2: MID Onset Analysis (Oneal, Russett & Berbaum)

<table>
<thead>
<tr>
<th>Variable</th>
<th>All Onsets</th>
<th>All Onsets</th>
<th>Fatal Mids</th>
<th>Fatal Mids</th>
</tr>
</thead>
<tbody>
<tr>
<td>(RISC)</td>
<td>-13.161***</td>
<td>(2.523)</td>
<td>-18.545***</td>
<td>(2.884)</td>
</tr>
<tr>
<td>(IIS)</td>
<td>-2.015***</td>
<td>(0.216)</td>
<td>-2.465***</td>
<td>(0.275)</td>
</tr>
<tr>
<td>(RISC^*IIS)</td>
<td>-28.499***</td>
<td>(6.822)</td>
<td>-50.478***</td>
<td>(8.59)</td>
</tr>
<tr>
<td>Democracy Score(_L)</td>
<td>-0.056***</td>
<td>(0.011)</td>
<td>-0.061***</td>
<td>(0.011)</td>
</tr>
<tr>
<td></td>
<td>-0.055**</td>
<td>(0.021)</td>
<td>-0.062***</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Trade-to-GDP Ratio(_L)</td>
<td>-54.459***</td>
<td>(14.482)</td>
<td>-40.166***</td>
<td>(12.893)</td>
</tr>
<tr>
<td></td>
<td>-104.222***</td>
<td>(28.444)</td>
<td>-78.713***</td>
<td>(22.453)</td>
</tr>
<tr>
<td>Joint Memberships in IGOs</td>
<td>-0.125**</td>
<td>(0.05)</td>
<td>-0.07</td>
<td>(0.048)</td>
</tr>
<tr>
<td></td>
<td>-0.22**</td>
<td>(0.09)</td>
<td>-0.175*</td>
<td>(0.082)</td>
</tr>
<tr>
<td>Allies</td>
<td>-0.373**</td>
<td>(0.149)</td>
<td>-0.262*</td>
<td>(0.138)</td>
</tr>
<tr>
<td></td>
<td>-0.402*</td>
<td>(0.249)</td>
<td>-0.203</td>
<td>(0.224)</td>
</tr>
<tr>
<td>Capability Ratio (log)</td>
<td>-0.286***</td>
<td>(0.05)</td>
<td>-0.232***</td>
<td>(0.045)</td>
</tr>
<tr>
<td></td>
<td>-0.467***</td>
<td>(0.079)</td>
<td>-0.416***</td>
<td>(0.073)</td>
</tr>
<tr>
<td>Contiguous</td>
<td>2.747***</td>
<td>(0.192)</td>
<td>2.588***</td>
<td>(0.183)</td>
</tr>
<tr>
<td></td>
<td>2.665***</td>
<td>(0.282)</td>
<td>2.412***</td>
<td>(0.263)</td>
</tr>
<tr>
<td>Distance (log)</td>
<td>-0.573***</td>
<td>(0.061)</td>
<td>-0.543***</td>
<td>(0.057)</td>
</tr>
<tr>
<td></td>
<td>-0.653***</td>
<td>(0.091)</td>
<td>-0.608***</td>
<td>(0.08)</td>
</tr>
<tr>
<td>Major Power Involvement</td>
<td>1.92***</td>
<td>(0.2)</td>
<td>1.722***</td>
<td>(0.178)</td>
</tr>
<tr>
<td></td>
<td>1.86***</td>
<td>(0.298)</td>
<td>1.621***</td>
<td>(0.276)</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.862***</td>
<td>(0.519)</td>
<td>-2.334***</td>
<td>(0.483)</td>
</tr>
<tr>
<td></td>
<td>-2.197***</td>
<td>(0.77)</td>
<td>-2.789***</td>
<td>(0.659)</td>
</tr>
<tr>
<td>N</td>
<td>320,781</td>
<td>318,129</td>
<td>320,547</td>
<td>317,922</td>
</tr>
<tr>
<td>(\chi^2) (Wald)</td>
<td>2,335.46***</td>
<td>3,342.81***</td>
<td>1,130.59***</td>
<td>1,554.68***</td>
</tr>
</tbody>
</table>

***=significant at the .001 level, **=.01, *=.05.
All tests are one-tailed. Semi-robust std. errors in ().
Sample includes all dyads for the years 1885-1992.
References

American Political Science Review 74(4):917–931.

34

