Estimating Multilevel Linear Models as Structural Equation Models

Daniel J. Bauer
North Carolina State University

Patrick J. Curran
University of North Carolina Chapel Hill

Presentation at the
2002 Meeting of the Psychometric Society

June 21-June 23, 2002
Outline

- Describe Motivation
- Introduce Multilevel Linear Model (MLM)
- Show that MLM can be estimated as SEM
- Show that we can extend MLM within SEM
Motivation

Strengths/Limitations of MLMs

• Optimal For
 o Obtaining correct SEs for nested data
 o Estimating & predicting random effects

• Difficult For
 o Estimating measurement models
 o Obtaining explicit tests of mediation

Strengths/Limitations of SEM

• Opposite of above

Goals are to combine the strengths of the two models and bridge modeling traditions
A 2-Level MLM w/ L1 Covariates

Level 1 Model

\[y_{ij} = \pi_{0j} + \sum_{p=1}^{P} \pi_{pj} x_{pj} + r_{ij} \]

where

\[r_{ij} \sim MVN(0, \Sigma_{r_j}) \]

Level 2 Model

\[\pi_{0j} = \beta_{00} + u_{0j} \]
\[\pi_{1j} = \beta_{10} + u_{1j} \]
\[\vdots \]
\[\pi_{pj} = \beta_{p0} + u_{pj} \]

where

\[\pi_{0j}, \pi_{1j}, \ldots, \pi_{0p} \sim MVN(\beta, T) \]
A 2-Level MLM w/ L1 Covariates

Reduced-Form Equation

\[y_{ij} = \beta_{00} + \sum_{p=1}^{P} \beta_{p0} x_{p_{ij}} + u_{00} + \sum_{p=1}^{P} u_{pj} x_{p_{ij}} + r_{ij} \]

Fixed Coefficients

Random Coefficients

This is a special case of the linear mixed-effects model of Laird & Ware (1982)

\[y_j = X_j \beta + Z_j u_j + r_j \]

where

- \(X_j \) is the design matrix for the fixed effects \(\beta \)
- \(Z_j \) is the design matrix for the random effects \(U_j \)

implying that

\[y_j \sim MVN(X_j \beta, Z_j T Z_j' + \Sigma_{r_j}) \]
From MLM to SEM

In our case, $X_j = Z_j$, so

$$y_j \sim MVN(X_j \beta, X_j TX_j' + \Sigma_{r,j})$$

Further, if the design is balanced then $X_j = X$

and

$$y_j \sim MVN(X \beta, XTX' + \Sigma_r)$$

This is the same structure as a CFA model where

$$X = \Lambda$$

$$\beta = \kappa$$

$$T = \Phi$$

$$\Sigma_r = \Theta \delta$$
A Classic Case: The Growth Model

Multilevel Linear Growth Model

Level 1: \(y_{ti} = \pi_{0i} + \pi_{1i} x_{ti} + r_{ti} \)
\[\Sigma_r = \text{DIAG}(\sigma_0, \sigma_1, \sigma_2, \sigma_3, \sigma_4) \]

Level 2: \(\pi_{0i} = \beta_{00} + u_{0i} \)
\(\pi_{1i} = \beta_{10} + u_{1i} \)
\(T = \begin{pmatrix} \tau_{00} \\ \tau_{10} \quad \tau_{11} \end{pmatrix} \)

Linear Latent Curve Model in SEM

\(X_i = X = \Lambda \) because assuming balanced design. Random coefficients are represented as latent variables.
Balanced Data

Example

3 male & 3 female students per school to evaluate effect of sex on language ability

Multilevel Linear Model

Level 1: \(\text{lang}_{ij} = \pi_{0j} + \pi_{1j}\text{sex}_{ij} + r_{ij} \)

Level 2: \(\pi_{0j} = \beta_{00} + u_{0j} \)
\(\pi_{1i} = \beta_{10} + u_{1j} \)

Equivalent SEM

\[
\begin{pmatrix}
\sigma
\end{pmatrix}
\begin{pmatrix}
r_{m1}
\end{pmatrix}
\begin{pmatrix}
r_{m2}
\end{pmatrix}
\begin{pmatrix}
r_{m3}
\end{pmatrix}
\begin{pmatrix}
r_{f1}
\end{pmatrix}
\begin{pmatrix}
r_{f2}
\end{pmatrix}
\begin{pmatrix}
r_{f3}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\text{Lang}_{m1} \\
\text{Lang}_{m2} \\
\text{Lang}_{m3} \\
\text{Lang}_{f1} \\
\text{Lang}_{f2} \\
\text{Lang}_{f3}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\pi_0 \\
\pi_1
\end{pmatrix}
\begin{pmatrix}
(\beta_{00}) \\
(\beta_{10})
\end{pmatrix}
\]

\[
\begin{pmatrix}
\tau_{00} \\
\tau_{10}
\end{pmatrix}
\]

Order of the 3 males, 3 females w/in units \(j \) is arbitrary
Strategies for Imbalanced Data

Treat as missing

- Construct complete-data $\hat{\Sigma}(\theta), \hat{\mu}(\theta)$
- Compare each y_j to submatrices $\hat{\Sigma}(\theta)_j, \hat{\mu}(\theta)_j$

Example: $M = \max$ # male students & $F = \max$ # female students in any given school.

![Diagram of a statistical model representing the strategies for imbalanced data.](image-url)
Strategies for Imbalanced Data

Compute $\hat{\Sigma}(\theta)_j, \hat{\mu}(\theta)_j$ directly from Λ_j

- Truer to multilevel approach: $\Lambda_j = X_j$
- X_j referred to as definition variables for Λ_j
- Due to Neale

Example: $S = \text{max } \# \text{ students in any given school}$
What to do if you’re imbalanced?

Both approaches provide computationally equivalent results but

- **Strategy 1** is better for few discrete covariates & complex residual structures.

- **Strategy 2** is better for continuous covariates (highly imbalanced data) & homogeneity of error variance.
Adding Higher-Level Predictors

Adding Level 2 Covariates

Problem is \(X_j \neq Z_j \) but one \(\Lambda_j \)

Rovine & Molenaar Solution:

- Fixed effects factors have means, no variance
- Random effects factors have variance, no means
- Define \(\Lambda_j = BLOCK(X_j, Z_j) \)
- True to mixed-effects model, non-intuitive.

Alternative Solution:

- Extends approach used w/ latent curve models
- L2 predictors are ‘fixed X’ covariates
 - Effects contained in \(\Gamma \)
- Computationally equivalent to R & M Solution

Both solutions can be extended to 3+ Level models
Expanding the Model: A New Approach to Multilevel CFA

Adding a measurement model for item level outcomes

Example:

Data from High-School & Beyond: Teacher Survey

- 456 schools; 10,365 teachers
 - Imbalanced: # teachers/school ranges from 1 to 30
 - Let max # teachers = T = 30

- 9 item measure of teacher perceptions of control
 - 4 items on control of school policy
 - 5 items on control of classroom teaching/planning
 - 6 point Likert scales; Centered at mean

Estimating 2-Factor Model
High-School & Beyond 2-Factor Model
Empirical Validation

Comparing SEM and MLM estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Multilevel CFA</th>
<th>PROC MIXED</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>λ_2</td>
<td>.9932 (.02342)</td>
<td>.9932</td>
</tr>
<tr>
<td>λ_3</td>
<td>1.1492 (.02508)</td>
<td>1.1492</td>
</tr>
<tr>
<td>λ_4</td>
<td>1.2867 (.02615)</td>
<td>1.2867</td>
</tr>
<tr>
<td>λ_5</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>λ_6</td>
<td>.9803 (.01746)</td>
<td>.9803</td>
</tr>
<tr>
<td>λ_7</td>
<td>.5444 (.01088)</td>
<td>.5444</td>
</tr>
<tr>
<td>λ_8</td>
<td>.6080 (.01532)</td>
<td>.6080</td>
</tr>
<tr>
<td>λ_9</td>
<td>.4269 (.01047)</td>
<td>.4269</td>
</tr>
<tr>
<td>τ_{w11}</td>
<td>.5114 (.01848)</td>
<td>.5114 (.01132)</td>
</tr>
<tr>
<td>τ_{w22}</td>
<td>.6384 (.01970)</td>
<td>.6384 (.01292)</td>
</tr>
<tr>
<td>τ_{w21}</td>
<td>.2637 (.01011)</td>
<td>.2637 (.00885)</td>
</tr>
<tr>
<td>τ_{B11}</td>
<td>.2029 (.01726)</td>
<td>.2027 (.01647)</td>
</tr>
<tr>
<td>τ_{B22}</td>
<td>.1611 (.01426)</td>
<td>.1611 (.01379)</td>
</tr>
<tr>
<td>τ_{B21}</td>
<td>.1153 (.01240)</td>
<td>.1153 (.01232)</td>
</tr>
<tr>
<td>σ_1</td>
<td>1.2579 (.02160)</td>
<td>1.2579 (.02084)</td>
</tr>
<tr>
<td>σ_2</td>
<td>1.4890 (.02471)</td>
<td>1.4890 (.02413)</td>
</tr>
<tr>
<td>σ_3</td>
<td>1.3828 (.02481)</td>
<td>1.3828 (.02367)</td>
</tr>
<tr>
<td>σ_4</td>
<td>1.0047 (.02214)</td>
<td>1.0047 (.02015)</td>
</tr>
<tr>
<td>σ_5</td>
<td>.9614 (.01778)</td>
<td>.9614 (.01686)</td>
</tr>
<tr>
<td>σ_6</td>
<td>.5799 (.01295)</td>
<td>.5799 (.01176)</td>
</tr>
<tr>
<td>σ_7</td>
<td>.3675 (.00636)</td>
<td>.3675 (.00615)</td>
</tr>
<tr>
<td>σ_8</td>
<td>1.0119 (.01566)</td>
<td>1.0119 (.01548)</td>
</tr>
<tr>
<td>σ_9</td>
<td>.4610 (.00718)</td>
<td>.4610 (.00711)</td>
</tr>
</tbody>
</table>