Adaptive Analysis of Adherence Data for HIV+ Subjects

George Knafl¹, Kristopher Fennie²
Carol Bova³, Kevin Dieckhaus⁴
Gerald Friedland², Ann Williams²

¹ Oregon Health & Science University ² Yale University

Supported in part by NIAID Grant # R01 AI057043, 2004-2007, PI G. Knafl, and by Yale University's Center for Interdisciplinary Research on AIDS (CIRA) through grants from the NIMH (# P30 MH62294)
Overview

• the study and its adherence data to be analyzed
 – both electronically monitored and self-reported adherence data
• the modeling process for adherence over time
 – adaptive Poisson regression and adaptive repeated measures
• electronically monitored adherence patterns for selected individual subjects
• consistency of MEMS adherence with prescribed adherence
 – and compared to baseline self-reported adherence
• mean self-reported adherence for all subjects
 – by time, gender, and treatment group
• assessment of gender effects on chance for high adherence
• the change in mean self-reported adherence for all subjects
• summary
ATHENA Project

- randomized clinical trial of HIV+ subjects on HAART
 - 172 eligible subjects
 - 50.6% (87) randomized to a home-based nursing intervention
 - control group received standard nursing care
 - 51.7% (89) male
- used Medication Event Monitoring System (MEMS) caps
 - all medications controlled by the caps were prescribed at 2 per day
 - MEMS data available for 164 (95.3%) of the eligible subjects
 - consisting of over 75,000 openings on over 66,000 days for 186 caps
- removed periods not truly reflective of subject adherence
 - when subjects not fully responsible for taking medications
 - e.g., when in prison, the hospital, an in-patient drug facility, etc.
 - or when subjects were off medications on provider order
 - usable data left for 161 (93.6%) of the eligible subjects

used MEMS IV caps and MEMS Version 2.61 software
Self-Reported Adherence Data

• adherence was also measured at each interview as the overall percentage of prescribed antiretroviral medications self-reported to have been taken within the prior 3 days
 – subjects were interviewed up to 7 times at 3 month intervals apart
 – 784 total self-reported adherence values available
 – from 171 (99.4%) of the eligible subjects

Collection of all data, electronic as well as self-reported, was supported in part by NINR Grant R01 NR04744, NCRR-NIH GCRC Program M01 RR00125 (Yale University), and NCRR-NIH GCRC Program M01 RR06192 (University of Connecticut Health Sciences Center)
Example Subject

• used a single cap for 419 days, opening it 836 times
 – an overall cap opening rate of 1.995 openings per day
 – very close to the prescribed rate of 2 per day
 – but how consistent was this subject's adherence over time?

• self-reported adherence was always 100%
 – at each of 5 interviews (at 0, 3, …, 12 months)

• to visualize the subject's MEMS data
 – partition the cap usage period into 100 equal-sized intervals
 • of 4.19 days each
 – compute grouped opening counts/rates for each interval
 – plot these rates over time
Example Subject

- subject has a very consistent pattern of openings over time close to the prescribed rate
- to characterize the adherence pattern
 - fit a smooth nonparametric function of time to the data
 - using Poisson regression
 - since modeling counts/rates
 - adaptively chosen using heuristic search based on cross-validation scores for distinguishing between models
Example Subject

- selected model is constant at about 2 openings per day
- to measure how close the MEMS pattern is to the prescribed rate
 - compare likelihood scores for MEMS adherence and prescribed adherence
 - measure of % consistency of MEMS adherence with prescribed adherence
 - equals 100% in this case
- agrees with self-reported adherence of 100% at each of 5 interviews
Modeling Process

• adaptive Poisson regression of MEMS adherence data
 – for each subject, adaptively chose a polynomial in an arbitrary number of arbitrary powers of time
 – heuristic search through such models to uncover an effective one
 – based on likelihood cross-validation (LCV) scores
 – measure consistency of MEMS with prescribed adherence
 • take the ratio of likelihood scores and convert it to a percentage
 (changed from earlier use of LCV scores; gives a more accurate depiction of consistency)

н, see paper in Statistics in Medicine, 2004; 23:783-801

• adaptive repeated measures modeling of self-reported adherence data
 – the same search process applied to linear mixed models with compound symmetry covariance (or exchangeable correlations)
 • the standard repeated measures covariance structure
 – but to data for all subjects combined rather than each separately
 – modeling dependence on time, gender, and treatment group
Selected MEMS Adherence Patterns

Improving Adherence
93.9% Consistency

Declining Adherence
77.6% Consistency

Oscillating Adherence
12.7% Consistency

Low Adherence
0.1% Consistency
Adherence Distributions

- % consistency
 - bimodal distribution for 161 subjects with usable MEMS data remaining after adjustment
 - peaks at the ends
 - at low (≤10%) and high (>90%) adherence levels
 - nearly uniform in between
 - and at risk for drug resistance
- baseline self-reported adherence
 - highly inflated with about 2 out of every 3 of 171 subjects reporting levels over 90%
 - otherwise fairly evenly spread out
Self-Reported Adherence by Time, Gender, and Treatment Group

- mean baseline adherence significantly
 - higher for males than females \((p<0.01)\)
 - lower for intervention than control group \((p=0.03)\) even though randomized
 - but not if only baseline data are analyzed

- mean adherence over time
 - is constant for the control group
 - increases for the intervention group from baseline to a constant post-baseline level

- gender effect persists post-baseline but intervention overcomes baseline treatment group differences

- does the gender effect result in an increased chance for consistently high levels of post-baseline adherence?
 - with consistently high meaning over 95% at all available post-baseline times

![Graph showing self-reported adherence by time, gender, and treatment group.](image)
High Adherence by Gender

- consistently high post-baseline self-reported adherence (>95% whenever available after baseline; 151 subjects)
 - differs significantly (χ^2, p=0.04) by gender
 - chance for males 16% more than for females
- high % consistency (>90%; 161 subjects)
 - also differs significantly (χ^2, p=0.04) by gender
 - difference in chance (14%) about the same
- gender effects exist using both adherence measures and are of comparable sizes
- but adherence to antiretroviral medications typically does not vary with gender

R. Scherer, Adherence in Resource Poor Settings, presentation at Elements of Success Conference, 2004
- is there an explanation?
Stratified Consistently High Post-Baseline Self-Reported Adherence

- for consistently high post-baseline self-reported adherence, the gender effect is actually a gender-within-intervention-group effect
 - significant (extended Mantel-Haenszel, p=0.04) difference by gender within treatment strata
 - more control males have consistently high adherence levels than females (56% vs. 45%), but not significantly (χ^2, p=0.36) more
 - intervention males significantly (χ^2, p=0.05) more likely than females (63% vs. 39%) to have consistently high adherence levels

- an intervention effect on consistently high post-baseline self-reported adherence is likely if its impact is improved for females
 - significant (p=0.03) if 1/3 more intervention females (from 39% to 72%) had high levels

- similar results hold for high % consistency
Change in Self-Reported Adherence

- mean self-reported adherence improves from baseline for the intervention but not the control group
 - mean change is zero for the control group and significantly (p=0.01) nonzero for the intervention group
 - using an adaptive repeated measures model with possible nonlinear dependence on time within gender and treatment groups
- improves by the constant amount of 7.6% for all post-baseline times
- there is no gender effect
- currently extending the methods to be able to conduct a similar analysis of % consistency between interviews
Summary

• adaptive modeling methods can be used to model MEMS and self-reported adherence data
 – adaptive Poisson regression applied to MEMS data
 • for individual subjects generating % consistency scores or for all subjects
 – adaptive repeated measures applied to self-reported data
 • for all subjects possibly categorized into groups (e.g., by gender)
• self-report provides an inflated assessment of adherence compared to % consistency of prescribed/MEMS adherence
 – but increases in adherence of similar sizes can occur for both
• ATHENA intervention increased self-reported adherence, but females were lower at baseline, so only males had an increased chance for consistently high adherence levels
 – intervention females may then be more at risk for drug resistance
 – a gender-sensitive revised intervention with increased effectiveness for females has the potential for significant improvement in the chance for high adherence for both genders combined