I. Why use phonological features?

We have found that the phonetic properties of sounds are relevant for their phonological behavior. For example, groups of sounds with shared properties often behave in a similar way, as seen in the Turkish and Arabic problems. (A group of sounds with shared properties that behave as a group phonologically is called a natural class.) Another example of the importance of the phonetic properties of a sound is found in the common phonological process known as assimilation, in which one sound takes on some or all of the properties of a neighboring sound. Assimilation is exemplified in the Turkish problem, as well as in others that we will see.

We propose that in the mental grammar, a segment is actually represented as a collection of properties. That is, it is the properties that the mental grammar is able to identify, store, and manipulate. This explains why sounds pattern in classes: the mental grammar deals in sound properties, and properties delineate classes of sounds.

So, we have determined that phonetic properties of sounds are useful and important for understanding phonological patterns, and we propose that properties are the units with which the mental grammar operates. But not all aspects of the phonetics of a sound are cognitively — which is to say phonologically — relevant. The phonology does not seem to be sensitive to properties like the total amount of energy expended in producing a certain sound, or the distance in millimeters that the tongue is displaced, for example. So, our theory of phonology needs to determine which phonetic properties are relevant for phonology and which are not.

We start by proposing that phonologically relevant sound properties are included in the model as phonological features. Many of these features are binary, meaning that they have a [+ value (for sounds that have a certain property) and a [– value (for sounds that do not). Other features are privative, also called monovalent or unary, meaning that they are simply present or absent without a [±] value. In our phonological model, a segment is represented as a bundle of phonological features.

What is the justification for claiming that some property of a sound should be given the status of a phonological feature in our model?

- The most important criterion is that the property in question be needed to account for some aspect of phonological behavior: for example, it is needed to define a natural class, or it is explicitly used in a phonological rule.

- Another justification for introducing a new phonological feature is the need to distinguish two sounds that are treated differently in some language but are not distinguished by phonological features in any other way.

- Ideally, all phonological features will also have a well-motivated phonetic basis, but the first two criteria are the most essential.
The general proposal that features are part of the mental grammar is accepted by almost all phonologists. However, we also need to determine what the features are, and how they are defined. Here, there is a lot more controversy among phonologists, because it turns out to be very difficult to develop a set of features that works exactly as desired for all of the languages whose phonologies have been studied. We will consider some of these debates as we examine data from various languages. But, for this class we will start out by adopting the following feature set, and we will use this set of features unless and until we make an explicit argument that it should be changed.

II. Our model of phonological features

A. Features specified for both consonants and vowels

[±consonantal]

[+cons] segments have at least as much constriction in the vocal tract as a liquid. [–cons] segments do not.

Distinguishes vowels and glides from non-glide consonants:

[+cons] — Stops, fricatives, affricates, nasals, liquids

[–cons] — Glides, vowels

• Glottal segments such as [h] and glottal stop pattern phonologically as [–cons] in some languages, probably because their only constriction is right at the glottis.

[±sonorant]

[+son] segments have frictionless airflow in either the oral or the nasal tract (so nasal stops are [+son]). [–son] segments have airflow that is significantly obstructed in the vocal tract overall.

Distinguishes sonorants from obstruents:

[+son] — Sonorants (nasals, liquids, glides, vowels)

[–son] — Obstruents (stops, fricatives, affricates)

[±voice]

[+voi] segments are produced with vibrating vocal folds. [–voi] segments are not.

Distinguishes voiced segments from voiceless segments:

[+voi] — Voiced segments

[–voi] — Voiceless segments

[±continuant]

[+cont] segments are produced with moving air in the oral tract. [–cont] segments are not. (Note that the status of the nasal tract is not relevant for this feature.)

Distinguishes stops — oral and nasal — from all other segments:

[+cont] — All segments other than oral and nasal stops

[–cont] — Oral and nasal stops
• What about affricates? They are “both” [+cont] and [−cont], since they are composed of a stop+fricative sequence. The best way to address this question is to see how affricates pattern. Do they form natural classes with stops, or with fricatives? When you work with affricates, consider whether there is any evidence one way or the other. The English postalveolar affricates are often proposed to be [−cont].

• Laterals have moving air at the side(s) of the oral tract, so they are often [+cont]. But in some languages, laterals pattern phonologically as [−cont]; this is understandable, because they do have a complete constriction in the center of the oral tract.

[±nasal]
[+nas] segments have a lowered velum, which allows nasal airflow. [−nas] segments do not.

Distinguishes nasal segments from oral segments:
[+nas] — Nasal stops, nasalized vowels, other nasalized segments
[−nas] — All oral segments

[±strident]
[+strid] segments are produced with high-frequency fricative noise. [−strid] segments are not (they may be fricatives/affricates with lower-frequency noise, or they may be non-fricatives).

For coronal segments, distinguishes sibilants from nonsibilants. Many phonologists also use this feature to distinguish labiodentals from bilabials, but this is more controversial.

[+strid] — Alveolar and postalveolar fricatives and affricates (and for some phonologists, labiodental fricatives and affricates)
[−strid] — All other segments

[±lateral]
[+lat] segments are produced with lateral (side) airflow around a central constriction. [−lat] segments do not have exclusively lateral airflow (they may have central airflow, or none).

Distinguishes lateral segments from central segments:
[+lat] — Lateral segments, including [l], the palatal lateral liquid in Spanish, the coronal lateral fricative in Welsh, etc.
[−lat] — Central segments (all segments that are not lateral)

[±syllabic]
[+syl] segments form the nucleus, also called peak, of a syllable. [−syl] segments do not.

Distinguishes vowels from glides; also distinguishes syllabic consonants from other consonants in languages where this distinction is relevant.
[+syl] — Vowels and syllabic consonants
[−syl] — Glides and non-syllabic consonants

• Note that this feature definition is not based on phonetics, but purely on phonology.
B. PLACE FEATURES: These features are specified for consonants.

Note that the so-called major place features are privative, written in small-caps by convention. (What difference does privative vs. binary entail in the predictions our model makes for the phonological behavior of a feature?)

\[\text{LABIAL} \]
\[\text{LAB} \] segments have the lower lip as their active articulator.

\[\text{LAB} \] — Bilabial and labiodental consonants

\[\text{CORONAL} \]
\[\text{COR} \] segments have the tip or blade of the tongue as their active articulator.

\[\text{COR} \] — Dental, alveolar, postalveolar, and retroflex consonants; palatals are \[\text{COR, DORS}\]

\[\pm\text{anterior}\]
\[+\text{ant}\] segments are produced in the forward half of the coronal region; \[-\text{ant}\] segments are produced in the posterior half.

\[+\text{ant}\] — Dental and alveolar consonants
\[-\text{ant}\] — Postalveolar and retroflex consonants

- This feature is special because only segments that are \[\text{CORONAL}\] have any value for \[\pm\text{ant}\] at all. \[\text{COR}\] segments may be \[+\text{ant}\] or \[-\text{ant}\], but other segments are neither \[+\text{ant}\] nor \[-\text{ant}\].
- The American English rhotic (IPA symbol: [ɹ]) is arguably \[-\text{ant}\]. However, non-retroflex flaps and trills are usually dental or alveolar, and therefore \[+\text{ant}\]. All of these rhotics are sometimes broadly transcribed with the symbol [r] for convenience.

\[\text{DORSAL}\]
\[\text{DOR}(S)\] segments have the back of the body of the tongue as their active articulator.

\[\text{DOR}(S)\] — Velar and uvular consonants; palatals are \[\text{COR, DORS}\]

- We have not yet considered how to distinguish velar from uvular consonants.

\[\text{GLOTTAL}\]
\[\text{GLOT}\] segments have the glottis (vocal folds) as their active articulator.

\[\text{GLOT}\] — Glottal consonants

C. VOWEL FEATURES: These features are specified for vowels.

\[\pm\text{high}\]
\[+\text{hi}\] segments have the tongue body higher than neutral (mid) position; \[-\text{hi}\] segments do not.

\[+\text{hi}\] — High vowels
\[-\text{hi}\] — Mid and low vowels
[±low]
[+lo] segments have the tongue body lower than neutral (mid) position; [-lo] segments do not.

[+lo] — **Low** vowels
[-lo] — **High and mid** vowels

- Mid vowels are [-hi, -lo]
- No segment can be simultaneously [+hi] and [+lo]

[±back]
[-bk] segments have the tongue body farther forward than the neutral (central) position; [+bk] segments do not.

[+bk] — **Back and central** vowels
[-bk] — **Front** vowels

- Our feature system does not easily distinguish between central and back vowels that are the same with respect to height and rounding (except potentially through a difference in [±ATR]; see below). This is not an accident — many phonologists have argued that languages never, or almost never, distinguish central and back vowels of the same height without some additional difference, such as length, rounding, or ATR. Therefore, it is reasonable to give them the same *phonological* featural representation, even though they are *phonetically* distinct.

[±round]
[+rd] segments have lip rounding; [-rd] segments do not.

[+rd] — **Round** vowels
[-rd] — **Unrounded** vowels

[±ATR] (advanced tongue root)
[+ATR] segments have the root of the tongue in an advanced (forward) position; [-ATR] segments do not.

[+ATR] — **Tense** vowels, including [i e y u o]
[-ATR] — **Lax** vowels

- There is some debate over the nature of this feature in the languages of the world. We will assume that the [±ATR] feature involved in vowel harmony in languages like Akan is phonologically/cognitively the same feature that distinguishes “tense” and “lax” vowels in English, but that it may have a slightly different phonetic realization in different languages. (For example, it may not always be accompanied by a length difference as it is in English.)
- In languages with a traditional “tense/lax” distinction, [+ATR] corresponds to “tense,” that is, to a more extreme/less mid¢ral position in the vowel space.
• Phonetically similar vowels may be phonologically classified with different ATR values in different languages, especially for central and low vowels. Looking to see what other vowels a particular vowel forms natural classes with may help determine its value for [±ATR] in a given language.

• In many languages with small vowel systems, [±ATR] is not active; that is, it is never phonologically relevant (and can therefore be ignored in a phonological analysis). Rule of thumb: Don’t bring up [±ATR] in a discussion unless you need to.