1. (20 points)
a. (10 points) Set up an equation of the form $Ku = f$ for finding the equilibrium states of a system of 2 masses of sizes $m_1 = 1, m_2 = 1$ attached to three springs with constants $c_1 = 2, c_2 = 1, c_3 = 2$ with fixed-fixed boundary conditions experiencing the external force caused by the downward pull of gravity.

b. (10 points) Find the general solution to the matrix ODE given by

$$u' = Ku - f.$$
Problem 1 Cont.
2. (20 points)
a. (10 points) Given the Midpoint Rule for approximate integration,

\[\int_a^b g(s)ds \approx (b - a)g\left(\frac{a + b}{2}\right), \]

design an implicit numerical scheme for approximately solving the 1d ODE

\[u' = f(t, u). \]

b. (10 points) Is your scheme linearly stable (i.e. given \(f(t, u) = \lambda u, \) \(\text{Re}(\lambda) \leq 0, \) is the approximation \(U_n \) bounded for each \(n)? \)
Problem 2 Cont.
3. (20 points) For the matrix

\[A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \]

find:

a. (10 points) The QR decomposition.
b. (10 points) Is \(A \) positive definite? If not, why not? If so, explain why and write an energy functional, \(P(u) \), such that the solution, \(\hat{u} \), to

\[A\hat{u} = f \]

is such that \(P(\hat{u}) = P_{\text{min}} \).
Problem 3 Cont.
4. (20 points) Fit the best linear plot \(x = ct + d \) to the following data points:

\[
t = -1, 0, 1; \ x = -1, 2, 4
\]

respectively.
Problem 4 Cont.
5. (20 points)
Given a smooth function \(v \) defined on \((0, 1)\), define an energy functional

\[
P(v) = \frac{1}{2} \int_0^1 (v_x)^2 \, dx - \int_0^1 fv \, dx.
\]

Show that the minimum of the function \(P \) occurs at a function \(u \) if and only if

\[
\int_0^1 u_x v_x \, dx - \int_0^1 fv \, dx = 0
\]

for all sufficiently smooth \(v \). (Hint: Look at the function \(q(t) = P(u + tv) \). Treat \(q \) as a smooth function of one variable \(t \) that you can differentiate, ...).
Problem 5 Cont.