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SUMMARY

Computational treatment of immersed rigid bodies, especially in the presence of free surfaces and/or
breaking waves, poses several modeling challenges. A motivating example where these systems are of
interest is found in offshore wave energy harvesting systems, where a floating structure converts mechanical
oscillations to electrical energy. In this study, we take the first step in developing a robust computational
strategy for treating rigid bodies with possible internal dynamics, such that they may be fully coupled to
a fluid environment with free surfaces and arbitrarily large fluid motion.

Many schemes for fluid–solid interaction involve formulating and solving all of the equations of motion
on a structured cartesian finite difference grid, but with overlaying Lagrangian representation of the
solid that is used to track its position. Ultimately, most of these techniques, which include methods for
deformable solids as well, solve the equations of motion completely on the Eulerian grid (see, for example,
(J. Comput. Phys. 2005; 205:439–457) and (J. Comput. Phys. 2008; 227:3114–3140)). By contrast, we
solve Lagrangian-type rigid body equations coupled with the Eulerian formulation of the Navier Stokes
equations for an immersed solid. This departure from the standard method facilitates the addition of the
internal dynamics characteristic of power conversion systems. The study is based on a finite difference
and level set description of a free surface between two immiscible fluids (for example water and air) for
incompressible flow by Summan (J. Comput. Phys. 1994; 114:146–159). Copyright � 2010 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The objective of this study is to present a robust numerical algorithm for the simulation of rigid
structures interacting with incompressible two-phase viscous fluid flow in the presence of free
surfaces. The numerical method is formulated in such a way that extra attenuating forces and
internal dynamics can be easily introduced into the rigid body equations of motion. A motivating
example where these systems might be of interest is offshore wave energy harvesting systems in
which a floating structure converts mechanical oscillations to electrical energy. Several sophisticated
approaches exist for rigid body interaction with flow described by the full Navier Stokes equations,
but until now few or none of these approaches solve the rigid body equations of motion in a fully
Lagrangian sense.

∗Correspondence to: Tod A. Laursen, Department of Mechanical Engineering and Materials Science, Duke University,
Durham, NC 27708-0300, U.S.A.

†E-mail: laursen@duke.edu

Copyright � 2010 John Wiley & Sons, Ltd.



714 J. SANDERS ET AL.

Many of the challenges of fluid/structure interaction have been addressed in the numerical
methods community (see for example [1–4]). In general terms, it is more common for the compu-
tational fluid dynamics (CFD) community to apply finite difference techniques in an Eulerian
framework to the spatial discretization of the Navier Stokes equations. There has also been a recent
effort within the finite difference community to accurately resolve free surfaces and two-phase
flows [5]. For solid mechanics, on the other hand, the numerical community usually employs Finite
Element Analysis with Lagrangian coordinate systems.

This study has been developed with an eye towards employing the full benefits of both the
Eulerian and Lagrangian coordinate systems for the analysis of fluids and solids, respectively. It is
built upon existing techniques for the robust representation of free surfaces in two-phase flow with
finite differences (see, for example, [5]), and introduces the idea that both Eulerian and Lagrangian
frameworks may be used to formulate and solve equations of motion, thus inheriting the advantages
of both schemes. It is our intent that the computation strategy presented herein be extendable in a
robust manner to the analysis of deformable bodies under Lagrangian coordinates, embedded in
an Eulerian fluid framework.

Many schemes for fluid–structure interaction involve formulating and solving all of the equations
of motion on a structured cartesian finite difference grid. In these methods, overlaying Lagrangian
representations of the solid track its location, but are not used explicitly to update its position.
Techniques have been developed for transferring forces or representing constraints from an over-
lapping solid reference frame to the fluid reference frame. Immersed boundary methods, pioneered
in the 1970s by Charles Peskin to model blood flow in the heart (see [1]), represent the action of the
solid on the fluid as singular forces applied at fluid nodes in the region of an interface. In Peskin’s
methods and extensions such as the Immersed Finite Element Method [6], an immersed solid is
advected with a background fluid velocity. A stress is thus generated in the solid and calculated
with some constitutive relationship, after which the forces are appropriately transferred back to the
fluid grid for subsequent time steps. Though the methods were developed for generally deformable
bodies, very stiff constitutive relationships, or other modifications, are used to approximate rigid
body motion [6, 7].

In a different approach, fictitious domain methods, or domain-embedding methods, have been
applied to fluid–structure interaction in various ways starting with the study by Glowinski in the
early 1990s [8–10]. Also referred to as Distributed Lagrange Multiplier approaches, fictitious
domain methods simplify a geometrically irregular domain for a partial differential equation by
extending the computational domain to a larger, more geometrically regular, region and applying
boundary conditions on the original boundary. Glowinski applied the method to rigid particles in
a fluid flow by ‘filling’ the rigid particle domains with fluid, solving the equations of motion on
the entire domain and enforcing rigidity of the fluid in the particle domain through a Lagrange
multiplier field. The multiplier can be seen as a body force required to enforce the rigidity constraint
on the particles. By formulating the equations of motions of the fluid simultaneously with the
equations of the particles and solving them together, boundary conditions between the two cancel
out and are never explicitly calculated. Glowinski’s methods are based on finite elements. The Rigid
Fluid Method [11] is a finite difference approach based on the same principles implemented in the
presence of a model-free surface (simulating single-phase fluid motion). In all of the preceding
methods the equations of motion for both the solid and fluid are calculated on an Eulerian grid.
Though Lagrangian coordinates may be employed to track the motion of a solid, and postcalculate
stresses, they are not used to calculate the motion or deformation itself, as would normally be
done for rigid body or solid mechanics problems. The paradigm of these methods is that the solid
is advected with the fluid motion.

A more recent body of work has begun by studying rigid body/fluid interaction using Lagrangian
equations of motion for the rigid body. Some aspects of two-way fluid/structure interaction with
Lagrangian bodies have been recently introduced in the graphics community, with emphasis on
speed and without quantitative evaluation [12–14]. Additionally, an immersed boundary method
is proposed in [15], in which the equations of motion for the body are formulated in a non-inertial
frame of reference. The method would be difficult to extend to multiple moving bodies in a given
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flow. The authors of [16] have also proposed a method with Lagrangian equations of motion
for rigid bodies in a fully three-dimensional flow, and have included a study of the effects of
strong versus loose coupling of the fluid and rigid body equations. In this study we propose a
fundamentally different method of formulating the forcing terms of the rigid body equations.

The following method will use the fully Lagrangian equations of motion to solve for the position
and velocity of the rigid body, and in a reversal of the usual approach, the local fluid will be
constrained to move with the calculated solid motion. Our approach has several advantages:

• For rigid particles, it is trivial to include the effects of the dynamics of mechanisms, including
(for example) attached springs, dampers, and masses.

• In addition to fully coupled fluid/solid motion, the method can be easily applied to the one-
way coupled problem in which the prescribed motion of a body forces the motion of the
surrounding fluid. An example of this type will be presented in this paper, where the wave
train in a wave tank is driven by an oscillating wedge.

• In the case of deformable solids, for which the method is intended to be extensible, a
Lagrangian equation of motion would facilitate the full use of finite elements with all of
the advantages therein, especially in cases where the strength of the material is of primary
importance.

• Fully Eulerian schemes must interpolate values of a fluid velocity onto a solid domain. In the
case of finite differences, it is not necessarily clear what a proper interpolation scheme would
be, whereas the interpolation from a Lagrangian rigid body or a deformable finite element
mesh onto fluid nodes is trivial, as in those cases the value of the velocity field is known a
priori.

For the scope of this study, with wave energy harvesters as the motivating application, the
most important advantage may be the lack of need to interpolate any fluid values onto the solid
domain in order to advect it. For continued study, the ease of representation of complicated internal
dynamics, including multiple interconnected spring mass systems, as well as power conversion
systems that act to damp the mechanical motion, will also be of primary importance. The current
scheme is benchmarked in two dimensions, but presented in a general way such that the algorithm
is extendable to three-dimensional flows. The solid/fluid interaction method has been built upon
stable and spatially second-order techniques for incompressible two-phase flow [17, 18].

2. GOVERNING EQUATIONS

2.1. Two-phase incompressible flow in an Eulerian framework

We consider a 2D fluid domain, �, with boundary �� as depicted in Figure 1. The differential
equations of conservation of momentum in a continuum for a fluid are

� f

(
Du
Dt

)
=∇ ·rF +� f g (1)

where � f is the density of the fluid, u is the velocity of the fluid, and �F is the fluid stress. For
an incompressible Newtonian viscous fluid, the stress is taken to be a combination of hydrostatic
and shear components,

rF =−pI+� f (∇u+∇Tu) (2)

where p is the hydrostatic pressure in the fluid and � f is the viscosity. Substitution of the fluid stress
into the momentum equation for an Eulerian framework, and including a condition on conservation
of mass, gives the familiar Navier Stokes equations for fluid velocity and pressure, which are

� f

(
�u
�t

+u·∇u
)

=−∇ p+� f (�u)+� f g (3)
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Figure 1. Two-dimensional domain including two-phase boundary (�=0) and rigid body, B.

and

∇ ·u=0. (4)

In the Level Set Method [5] for tracking two-phase flow, the conservation of momentum for the
fluid is given as

� f

(
�u
�t

+u·∇u
)

=−∇ p+� f (�u)+� f g+���(d)n (5)

where the last term represents a local surface tension force concentrated at the location of the
phase interface. In this notation � is the surface tension, � is the curvature of the interface, n is the
surface normal at the interface, and �(d) is the Dirac delta function at the location of the interface.
The location between the phases is tracked as the zero contour of a scalar-valued function �(x)
which is advected with the fluid flow:

��

�t
+u·∇�=0 (6)

At any position, x, where �(x)>0 the fluid is considered to be in a liquid phase, and the gas phase
exists where �(x)<0. Fluid properties such as density or viscosity in either phase can then be
expressed as a function of location in the domain. For example, in the case of density,

� f =�l H (�)+�g(1− H (�)) (7)

where the function H (�(x)) is

H (�(x))=
{

0 �<0

1 �>0
.

A similar expression holds for viscosity. Finally, the system of PDE’s is completed through
appropriate boundary and initial conditions on velocity and pressure.

2.2. Rigid body equations of motion

The Lagrangian equations of motion for an immersed rigid body, B, with boundary �∗ completely
immersed in �, are given by

m
dv
dt

=
∫

�∗
td�∗+mg, (8)

and

I
dx

dt
=
∫

�∗
(r×t)d�∗, (9)
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where m is the solid mass, I is the rigid body rotational interia, v is the body’s translational
velocity, x is the rigid body angular velocity around the center of mass, and r is the position vector
from the center of mass to a point on the solid boundary �∗. The forcing terms on the particle are
given as a combination of surface forces, t, and body forces, in this case assumed to be gravity.
Our challenge, which is avoided in existing methods where these equations are folded completely
into an Eulerian framework, is to determine the functional form of the forcing, t, on the particles
from the physical coupling with the surrounding fluid.

2.3. No-slip boundary between solid and fluid

The fluid and solid equations are coupled through a no-slip condition

u=v+(r×x) on �∗. (10)

In addition there is a balance of stresses

rfn= t on �∗ (11)

which states that the traction on the solid surface is equal to the fluid stress acting in the direction of
the surface normal at any point on the particle boundary. Initial conditions on the particle position,
d0, and velocity, v0, complete the physical system.

3. FLUID/SOLID INTERACTION MODEL

As with many numerical schemes (see, for example, [6, 8–11]) we approach the problem by first
filling the solid domain with artificial fluid, which will be used to facilitate the interaction between
the two. The kinematic boundary condition on the interface between the solid and fluid is extended
to the entire domain of the artificial fluid:

u=v+(r×x) on B (12)

Additionally, the dynamic boundary condition is expanded to indicate that the values of fluid stress
both interior and exterior to the particle domain must be equal to the surface traction and each
other at the particle interface:

ri
F n=ro

F n= t on �∗ (13)

The superscript i indicates a value that is supported only interior to the particle domain B, in the
artificial fluid. Similarly, a superscript o will indicate a fluid property in the domain exterior to
the particle (i.e. �\ B). The balance of stresses (13) allows us to determine the forcing terms for
the rigid body equations of motion. We substitute the fluid stress for the solid traction over the
interface �∗ in (8) and (9) to yield

m
dv
dt

=
∫

�∗
(rF n)d�∗+mg (14)

and

I
dx

dt
=
∫

�∗
r×(rF n)d�∗. (15)

Here we have the choice of either �i
F or �o

F ; they are equivalent on the boundary via (13). Equation
(14) is converted to a volume integral through simple application of the divergence theorem:

m
dv
dt

=
∫

B
(∇ ·rF )dB +mg (16)
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which is equivalent, through (1), to

m
dv
dt

=
∫

B

{
� f

(
Du
Dt

)
−� f g

}
dB +mg. (17)

Additionally, it can be shown, given the symmetry of �F , that (15) is equivalent to

I
dx

dt
=
∫

B
r×

{
� f

(
Du
Dt

)
−� f g

}
dB. (18)

The complete equations of motion for the coupled system are then given by (5) for the fluid in
the domain �\ B, (12) for the fluid in the domain B, and (17) and (18) for the motion of the rigid
bodies.

4. NUMERICAL METHOD

4.1. Time integration scheme

Given a set of initial conditions for the fluid domain, un , and pn , and the rigid body, dn , vn , we
wish to advance the solution of all the variables from t =n to t =n+1. Time integration is based
on a classic Chorin pressure projection scheme [19]. First, an intermediate velocity is calculated
over the entire domain �.

u∗ =un +�t

[
−un ·∇un

� f
+ � f (�un)

� f
+ ���(d)n

� f
+g

]
(19)

followed by a pressure projection step for pn+1, again, in the entire domain,

∇2 pn+1

�
= ∇ ·u∗

�t
(20)

and finally a correction to the velocity field,

û=u∗+ �t∇ pn+1

� f
. (21)

The solution is now divergence free, but does not represent a rigid velocity field in the domain,
B. Everywhere else in the domain un+1 = û. The last step would be to advance the solution in
that domain from û to un+1. In fact, this is a trivial step, because we know that the velocity field
in B will be given by the particle velocity vn+1. This is a point of fundamental departure from
the previous rigid body/fluid techniques, which advect the rigid body with the fluid, and compute
forces on the background fluid mesh. In our case, we are advecting the fluid with the solid motion,
and calculating forces which are applied to the solid equations of motion. To compute that particle
velocity, however, we do need to be able to calculate the quantity∫

B

[
� f

Dun+1

Dt
−� f g

]
dB

It will be demonstrated that this can be computed with knowledge of the solution in the rest of
the fluid field. As a point of notation, r̂ should be understood to be the fluid stress (2) at the
intermediate time step t̂ .

If the fluid stress for the artificial and real fluid is balanced on the boundary between them:

ri
F n=ro

F n= t on �∗ (22)

it follows that the integrals are also equal over the interface.∫
�
ri

F nd�=
∫

�
ro

F nd� on �∗ (23)
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The last step of the fluid solve, going from û to un+1, will only affect the velocity field in the
artificial fluid, meaning û=un+1 outside the particle domain, thus,∫

B

[
� f

Dun+1

Dt
−� f g

]
dB =

∫
�∗
ri,n+1

F nd�∗ (24)

=
∫

�∗
ro,n+1

F nd�∗ (25)

=
∫

�∗
r̂F nd�∗ (26)

=
∫

B

[
�

Dû
Dt

−�g
]

dB (27)

In other words, the results of the integral on the left side of Equation (24), which is needed to
complete the rigid body equations of motion, can be known from an evaluation of the equivalent
integral at the intermediate time t̂ . The term Dû/Dt =�û/�t + û·∇û is divided into inertial and
convective components. The inertial term is discretized with a forward Euler strategy consistent
with the rest of the method, �û/�t = (û−un)/�t . Similar expressions to (27) may be used, as
desired, to couple fluid forces to solids which are deformable or have internal dynamics.

The time advancement algorithm, including a central difference approach to the rigid body
equations, can now be described. For simplicity, only the translational rigid body equations will
be presented, but the details of the exponential map used to update the rotational motions can be
found in [20]. In brief, an exponential map of large rigid body rotations is employed to solve for
the rotational velocity x and acceleration a, providing an algorithmic approach directly analogous
to the central difference technique described below for rigid body translational degrees of freedom.
The scheme is staggered, with the fluid velocity solved at time steps n−1/2 and n+1/2 and the
particle variables solved at steps n−1/2,n,n+1/2, and n+1. Additionally, the level set equation
is advanced with a fourth-order Runga Kutta scheme.

Given initial conditions un−1/2, dn , vn−1/2 in a typical time step, the algorithm may be summa-
rized as follows:

1. Calculate the initial acceleration of the rigid body,

an = f n(dn,un−1/2)

m
, (28)

where for the first time step only, un−1/2 =u0, and the right side forcing f n is given by the
right side of Equation (17).

2. Update the particle velocity, v and x,

vn+1/2 =vn−1/2 +�tan. (29)

3. Update the particle position,

dn+1 =dn +�tvn+1/2. (30)

4. Set intermediate velocities equal in B,

un+1/2 =vn+1/2 +(r×xn+1/2) in B. (31)

The value of un+1/2 in the domain B is imposed as a boundary condition for the fluid velocity
within the domain overlapped by the solid.

5. Solve for an intermediate fluid velocity ,

u∗ =un−1/2 +�t

[
−un−1/2 ·∇un−1/2

� f
+ � f (�un−1/2)

� f
+g

]
. (32)
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6. Complete a pressure projection step,

∇2 p

� f
= ∇ ·u∗

�t
. (33)

7. Correct the final fluid velocity,

un+1/2 =u∗+ �t∇ p

� f
. (34)

8. Solve the level set equation and update the free surface position.
9. Next time step: increment n+1⇒n, and n+1/2⇒n−1/2 and return to Step 1.

For any explicit scheme there is a time step restriction to maintain stability. In this case, the
time step is taken to be the lesser of the convective (�tconv) and viscous (�tvisc) stable time steps,
where

�tconv = C(
umax

�x
+ vmax

�y

) (35)

and

�tvisc = 1

2∗
[(

� f

� f

)
max

(
1

�x2
+ 1

�y2

)] . (36)

For all of the numerical examples, the stable time step is recalculated at every step.
The preceding time integration scheme represents a loose coupling between the equations of

motion for the rigid bodies and fluid. That is to say, the forcing terms for the rigid body equations
are dependent only on the location of the body at the preceding time step. A loose coupling strategy
is computationally efficient, but is known to cause stability problems in certain interaction regimes,
most importantly those in which the solid has very low mass. Additionally, the second-order
accuracy of the central differences may be compromised by the staggered approach, rendering the
method first order in time. A strong coupling integration scheme for these kinds of equations is
proposed in [16] and shown to alleviate many of the stability issues. In a strongly coupled scheme
the motion of the body is determined at least in part by the updated position, and thus requires
iterative solving.

4.2. Spatial discretization

The Eulerian fluid domain is discretized with a staggered finite difference grid [21] with face
centered velocities and cell centered pressures. Viscous terms in the Navier Stokes equations are
approximated with second-order central differences. A second-order upwinding stencil is applied
to the convective terms in which, for example:

u
�u

�x
=u+u−

x +u−u+
x (37)

where at a nodal point (i, j)

u± =0.5(ui, j ±|ui, j |), (38)

u−
x = 3ui, j −4ui−1, j +ui−2, j

2�x
, (39)

and

u+
x = −ui+2, j +4ui+1, j −3ui, j

2�x
, (40)

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:713–732
DOI: 10.1002/fld



A NEW METHOD FOR SIMULATING RIGID BODY MOTION 721

and similar expressions hold for the terms v(�u/�y), u(�v/�x) and v(�v/�y). In some cases we
will compare the effects of using first-order upwinding, in which

u−
x = ui, j −ui−1, j

�x
, (41)

and

u+
x = ui+1, j −ui, j

�x
. (42)

The discrete values of � are stored at cell centers and its spatial gradient is calculated with
either ENO or WENO schemes [22], depending on the proximity of a nodal point to the domain
boundary.

The discrete form of the step function H (�) is given by

Hd (�)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 �<−	

1

2

(
1+ �

	
+ 1



sin

(

�

	

))
, |�|<=	

1 �>	

	=1.5∗�x (43)

The particle boundary is defined for convenience through a second level set function, �B , and step
function Hd (�B), where the step function is 1 in the solid domain and 0 in the fluid. The particle
level set and heaviside functions are not smoothed and used for geometric tracking purposes only
and are advected with the particle position rather than the level set equations. The integral of
any quantity, f , over the particle domain, B embedded in a computation domain � may then be
calculated through evaluation of∫

B
f dB =

∫
�

f (x)Hd (�B(x))d� (44)

5. NUMERICAL RESULTS

5.1. Flow around a cylinder

A standard benchmark for flow solvers and rigid bodies is the case of a rigid cylinder in a uniform
flow field for a range of Reynolds numbers. For very low Reynolds (Re<1) the solution approaches
Stokes flow (in a finite domain) and little separation of flow occurs downstream from the cylinder.
For this case, near field analytical solutions exist for pressure distribution over the surface of
the cylinder [23]. To compare against this solution, we construct a square channel [2cm×2cm]
with a cylinder of diameter 0.2 cm and apply an inlet velocity u∞ at the left boundary. The
right boundary has an outflow condition and symmetry is applied at the walls, that is uy =0 and
dux/dn =0. The Reynolds number in this case is 0.1. Velocity and pressure contours for a uniform
grid (�x =�y =0.02cm) are given in Figures 2 and 3. The confined numerical solution for velocity
and pressure approaches the unconfined analytical solution in the near field to the cylinder. To
demonstrate this, the pressure and friction (calculated as � f (∇u+∇Tu)) are reconstructed on the
cylinder’s surface via a finite difference interpolation operator given in [24]. The solution for
pressure, for example, at any Lagrangian point (�k,�k) on the boundary can be constructed from
the values at surrounding nodes via

pk =�x�y
∑
i

pi r (xi −�k)r (yi −�k) (45)
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Figure 2. Velocity contours for Stokes flow around a confined cylinder.
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Figure 3. Pressure contours for Stokes flow around a confined cylinder.

where

r (d)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 r<−	

1

2	

(
1+cos

(
r

	

))
, |r |<=	

0 r>	

is the interpolation operator with 	=1.5�. The indices k and i indicate nodal points and not vector
indices. Figure 4 shows the comparison of the analytical Stokes flow surface pressure and friction
distribution versus numerical results.

To study the behavior of the system (wake formation and vortex shedding) at higher Reynolds
numbers, the numerical domain is extended to a long channel, [2cm×10cm]. The boundary
conditions remain the same. As the Reynolds number increases, separation of the flow occurs and a
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Figure 4. Surface pressures and friction for a confined cylinder in Stokes flow.

Figure 5. Wake formation and vortex flow over a cylinder for (a) Re=5; (b) Re=50; (c) Re=100; and
(d) Re=200. Time = 3 s. u-velocity is shown.

Table I. Drag coefficient for the current study versus the literature benchmarks.

Re Current [25] [26] [27]

5 4.32 4.42
50 1.60 1.74 1.38 1.81
100 1.60 1.46 1.26 1.76
200 1.58 1.29 1.18 1.76

stable laminar vortex appears in the wake of the cylinder (Figure 5). Von Karman vortex shedding
is known to occur at Reynolds numbers for this case starting around Re=45.

Lift and drag coefficients in this case are an important measure of the accuracy of an algorithm.
The lift and drag coefficients, CL and CD respectively are calculated as

C(L or D) = F(L or D)

0.5� f U 2∞d
(46)

where d is the diameter of the cylinder. FL and FD are the total lift and drag forces, which can be
calculated via the total traction acting on the cylinder at a given time:

FL =
∫ 2


0
|r f ·n|sin()d and FD =

∫ 2


0
|r f ·n|cos()d (47)

where  is measured from the stagnation point. For Reynolds numbers higher than Re=40, CL
and CD are time dependent. Time-averaged values for drag coefficient are given in Table I and
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Figure 6. Lift coefficient versus time for flow around a fixed circular cylinder for Re=200.

compared with the standard literature numerical and experimental results. A plot of lift coefficient
versus time for Re=200 is given in Figure 6.

5.2. Sedimentation and rising of a cylindrical disk

A second numerical problem that includes rigid body dynamics and has been extensively studied
is that of the sedimentation of a circular disk. Construction of the problem is done in such a way
that it matches numerical studies from the Distributed Lagrange Multiplier approach [9] and IFEM
[6] approaches. A cylinder of 0.25 cm radius starts at rest in the center of a 2D channel with width
2 cm and length 6 cm. The fluid properties approximate water, with a density of � f =1.0(g/cm3)
and viscosity � f =0.01(g/cm s). The solid has a density �s =1.2(g/cm3) and will accelerate
downwards in the fluid until viscous drag forces balance gravity and a terminal velocity is reached.
Velocity and pressure contours for the fluid domain with a uniform grid (�x =�y =0.04 cm) are
given in Figure 7. Figure 8 show reasonable agreement with the previous studies for the time
history of position and velocity of the rigid particle.

A more challenging problem in terms of stability, especially for loosely coupled time integration
schemes, is that in which a solid that is less dense than a surrounding fluid rises due to buoyancy
effects. Thus, the problem was repeated but with the cylinder starting at rest at y=2.0 cm and
a density of �s =0.8(g/cm3). Figure 9 shows three different velocity profiles of the cylinder as
it rises in the fluid, corresponding to successively finer grids. Figure 10 shows the final upwards
‘terminal’ velocity to be consistently converging to a stable solution (given by an appropriately
refined reference grid).

5.3. Rigid body in a two-phase fluid: buoyancy

One example of the motion of a rigid body in a two-phase fluid is the decaying oscillation of
a buoyant body on a free surface. There have been analytical and numerical studies to provide
benchmarks [28, 29] and in this case we study a circular cylinder in a tank of water and air,
with density half that of water such that the buoyant equilibrium point is approximately half
submerged (the density of air being 1000 times smaller does comparatively little to change
the final equilibrium position). To match the simulations of [29], which treated non-linear free-
surface/rigid body interaction with an implicit boundary element technique, a cylinder with radius
2 m is positioned in a tank of 50 m in length with rigid walls and a no-slip condition at the ends
(a condition that allows reflected waves). The depth of the tank is 4 m. The initial position of
the cylinder’s center of mass is 0.5 m above the free surface. The liquid phase has properties
of water with �=1000(kg/m3),�=0.001(kg/m ·s), and the gas phase has properties of air with
�=1(kg/m3),�=0.00002(kg/m ·s). Results are shown in comparison to those from [28, 29] in
Figure 11 for a grid size of �x =�y =0.3m. In both the current and previous numerical studies
the heave motion of the cylinder decays over a 10-s simulation period and the center of mass
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Figure 7. Velocity and pressure (minus hydrostatic pressure) contours for sedimenta-
tion of a cylindrical disk at t =0.4s.

Figure 8. Position and velocity of disk as a function of time versus benchmark
solutions for sedimentation of a cylindrical disk.

settles to the predicted position (indicated by the dotted line) based on buoyancy. The Reynolds
number in this case can be defined [30] by

Re= �water�D2

�water
(48)

where � is the frequency of vertical heave and D is the diameter. For this example Re≈8e6.
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Figure 9. Velocity profiles for a buoyant cylinder in successively finer grids.

Figure 10. Error in terminal velocity for a buoyant cylinder. The error decreases at an order slightly greater
than 1. A fine grid with a spatially converged solution is used as the reference solution.

Figure 11. Decay of heave for a buoyant cylinder for (a) the current study and (b) [29].
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Figure 12. Physical dimensions of barge shape for roll calculations.

For the numerical results of [29] the damping ratio is approximately 0.19, and in our numerical
results it is slightly less (0.15). The damping ratio is calculated as

Z = d√
(2
)2 +d2

(49)

where d is the logarithmic decrement of two successive periods of oscillation, T1 and T2:

d = ln

(
T1

T2

)
. (50)

A parametric study of the problem shows that the two greatest factors that affect the damping
ratio are the value of gravity and water depth, with a deeper basin decreasing the damping ratio.

5.4. Roll of a buoyant body

The in-plane rotation (or roll) of a buoyant body can represent a large part of the total motion, and
has the potential to have a profound impact on the energetic uptake of wave energy harvesters.
Decades of research from the ship capsize community [31] has shown that heave and roll are
strongly coupled motions under wave excitations for non-axisymmetric bodies.

Experimental and two-dimensional numerical results from a study of free decay of roll motion
for a barge [32, 33] in a wave basin provide a suitable benchmark for the roll of an oblong object,
and are repeated with the current method.

The shape of the barge, with dimensions, is shown in Figure 12. The water depth is set to 12 ft
and two different values for draft, or the distance from the still water line to the barge depth, are
used (4 and 6 feet). In addition, three different values of center of gravity (CG) and radius of
gyration (RG) are used, giving a total of six test cases, A1–B3. Radius of gyration is related to
the rotational intertia of the barge through the relationship I =m(RG)2. Natural roll periods are
determined for the six cases by giving the body an initial angle of 10◦ from horizontal. The liquid
phase has properties of water with �=62(lb/ft3),�=1.8×10−5(lbs/ft2), and the gas phase has
properties of air with �=0.062(lb/ft3),�=3.6×10−7(lbs/ft2). Results are reported for a grid size
of �x =�y =0.65ft.

Results for the natural roll frequencies, compared with the numerical calculations of [33] and
original experimental data from [32], are given in Table II. Additionally, the time history of the roll
angle of the barge is shown for one example case (A1) in comparison to the previous numerical
study (Figure 13) with both second- and first-order upwinding. It can be seen that the current
study is once again slightly less dispersive than previous numerical studies. The slight blip in the
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Table II. Experimental and numerical comparisons of decaying roll frequencies for six cases.

Case A1 A2 A3 B1 B2 B3

Draft (ft) 4.0 4.0 4.0 6.0 6.0 6.0
CG (ft) 9.13 10.23 11.18 9.24 10.33 11.30
RG (ft) 10.31 10.41 10.09 10.11 10.23 10.11
Exp roll period (s) 5.4 5.9 6.5 7.3 8.9 12.3
Num roll period (s) 5.73 6.18 6.76 8.01 10.36 15.69
Current study (s) 5.36 5.80 6.26 7.12 8.4 11.86
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Figure 13. Example time histories of free decay of ship roll motion for previous (a) and current studies
with second-order (b) versus first-order upwinding (c).

Figure 14. Setup for wave tank simulation problem.

consistent decay of the roll angle at t =20s comes from the influence of reflected waves in the
current study.

The Reynolds number in these cases range from Re=2e5 to Re=6e5.

5.5. Wave tank and buoy simulations

The goal of the presented algorithm will be to compare numerical results with a scale wave tank
with buoy prototypes to replicate energy harvesting systems. The simulated wave tank is 5 m long
with a water depth of 0.5 m. A wedge-shaped wave generator with variable frequency oscillates at
one end. The motion of a buoy with a height of 20 cm, width of 10 cm, weight of 15 g, and center
of gravity 5 cm below the geometric center, is studied under steady-state conditions generated in
the tank with the wave generator moving at 1 Hz. The numerical domain is shown in Figure 14.
Single time snapshots of the simulation are shown in Figure 15, with closeups of the buoy shown
at the same times in Figure 16 and a time history of the heave of the cylinder is given in Figure 17.
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Figure 15. Snapshots of wave tank simulations at t =0.0,1.4, 2.4, 5.2 and 8.4 s.

6. CONCLUSION

A numerical method has been presented for the simulation of the two-dimensional motion of rigid
bodies and their interactions with two-phase incompressible flow and large amplitude-free surface
motion. The method uses a finite difference approach to the two-phase fluid problem that takes
advantage of the current level of sophistication of the level set method. However, the standard
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Figure 16. Zoomed in snapshots of wave tank simulations at t =1.4, 2.4, 5.2 and 8.4 s.
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Figure 17. Heave motion of center of mass of a free floating buoy in wave tank.

paradigm for tracking solid motion in a fluid, that is to say, solving for solid motion on a fluid grid,
has been abandoned in favor of a Lagrangian approach to rigid body motion, in order to facilitate
the anticipated addition of internal dynamics to the solid equations of motion, as well as make
the method more easily extensible to problems where material deformation may be important to
rigorously resolve. The current method shows a good agreement with standard benchmarks. For
the full resolution of off-shore flows, it is anticipated that the method will be further benchmarked
in 3D. Additional work will involve the integration of internal dynamics into the algorithm, and
comparison to wave tank data. The two-phase solver can additionally be improved through the use
of the relatively new Coupled Level Set Volume of Fluid (CLSVOF) method [34], which has been
shown to greatly improve the volume conserving properties of the level set method.
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