Problem Set 4 Solutions

Extensive Form

\((0,0)\)

\((1,1)\)

\((2,2)\)

\((3,3)\)
Sequential play is a refinement of Perfect Bayesian Equilibrium. So I begin by solving for all PBE.

Separating: Tough plays B, Wimp plays Q.

\[\Rightarrow \mu = 1, \quad q = 0 \]

Barnie will play N when B is played and D when Q is played.

Wimp will always have incentive to deviate.

\[\Rightarrow \text{Not PBE} \]

Separating: Tough plays Q, Wimp plays B.

\[\Rightarrow \mu = 0, \quad q = 1 \]

Barnie will play N when Q is played and D when B is played.

Wimp will always have incentive to deviate.

\[\Rightarrow \text{Not PBE} \]

Pooling at Q

When Q is observed, \[q = \frac{9}{10} \]

Barnie gets: \% from D, \% from N

So will play N after Q.
continued

→ \(W \) never has incentive to deviate,
→ \(T \) will depending on off the equ. path beliefs. Specifically we need \(D \) to be played with a high enough probability

Barnie will play \(D \) when

\[1 - \mu > \mu \implies 1 > 2\mu \implies \mu < \frac{1}{2} \]

PBE where both types play \(0 \), and
Barnie plays \(N \) after \(0 \).
If \(B \) is observed Barrie believes \(\mu \leq \frac{1}{2} \) and plays \(D \).

Pooling at \(B \)
when \(B \) is observed \(\mu = \frac{9}{110} \)

Barrie gets: \(\frac{9}{110} \) from \(D \), \(\frac{9}{110} \) from \(N \)
so he will play \(N \) after \(B \)

→ \(T \) will never deviate
→ \(W \) will depending on off equ. beliefs.

we want Barrie to play \(D \)

\[1 - q > q \implies q < \frac{1}{2} \]

PBE where both types play \(B \), and
Barnie plays \(N \) after \(B \). If \(q \) is observed Barrie believes \(q \leq \frac{1}{2} \) and plays \(D \).
continued

\[a = \frac{pr(T|B) - pr(B|T) \cdot p(T)}{pr(B|T) \cdot p(T) + pr(B|Q) \cdot p(Q)} \]

\[\frac{q}{p + d(1-p)} \]

\[\frac{g}{g+l} \]

\[
\begin{align*}
8 = & \frac{pr(T|Q) - pr(Q|T) \cdot p(T)}{pr(Q|T) \cdot p(T) + pr(Q|Q) \cdot p(Q)} \\
& \frac{g}{g+l} \]
\end{align*}
\]

Semi-separating

Semi-separating
(3) continued

b is chosen to force indifference:

\[
\frac{1}{9b+1} = \frac{9b}{9b+1} \quad b = \frac{1}{9}.
\]

Player 2 is indifferent, how must he mix to prevent player 1 from deviating when 2 is played.
He plays prob. d on D

W type:

\[
d + (1-d)3 \geq 2
\]

\[
d + 1-d > \quad \Rightarrow \quad 1>0 \quad \text{always holds}
\]

T type:

\[
2(1-d) = 3
\]
\[
2 - 2d = 3
\]
\[
-2d = -1 \quad d = \frac{1}{2} \quad \text{not possible}
\]

Cannot make player 1 indifferent, so he will never mix.
We have 2 PBEs, both are pooling.

As discussed in class (on 02/17), we can always find a sequence that rationalizes the necessary off-the-equilibrium path beliefs.

Thus, the following are also sequential equilibria.

(A) Both types play Q
 - Barnie plays N after Q
 - $q = \frac{9}{10}$, $r = \frac{1}{2}$
 - Barnie plays D after B

(B) Both types play B
 - Barnie plays N after B
 - $u = \frac{9}{10}$, $q = \frac{1}{2}$
 - Barnie plays D after Q
Normal Form

<table>
<thead>
<tr>
<th></th>
<th>DD</th>
<th>DN</th>
<th>ND</th>
<th>NN</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB</td>
<td>0.9/10, 0.1/10</td>
<td>0.9/10, 0.1/10</td>
<td>0.29/10, 0.9/10</td>
<td>0.29/10, 0.9/10</td>
</tr>
<tr>
<td>BC</td>
<td>1, 0.1/10</td>
<td>0.1/10, 0</td>
<td>0.28/10, 0</td>
<td>3, 0.29/10</td>
</tr>
<tr>
<td>QB</td>
<td>0, 0.1/10</td>
<td>0.58/10, 0</td>
<td>0.3/10, 0</td>
<td>2, 0.29/10</td>
</tr>
<tr>
<td>QQ</td>
<td>0.1/10, 0.1/10</td>
<td>0.5/10, 0.9/10</td>
<td>0.1/10, 0.1/10</td>
<td>0.5/10, 0.9/10</td>
</tr>
</tbody>
</table>

Where BB means: Bif T, Bif N

DD means: Dif B, Dif Q

Nash: \((QQ, DN), (BB, ND)\)

and a mixed.
2.4) I am going to apply the intuitive criterion to part 2.2.

The idea behind this is that we can eliminate a PBE if there is some type \(\Theta \) who has a deviation that is assured of yielding him a higher payoff as long as the other players do not assign a positive probability to the deviation having been made by any type \(\Theta \) to whom the action isagu.
dominated.

Look at PBE A (pooling at \(\Theta \))

\(W \) never has incentive to deviate so player \(\Theta \) should not place positive prob on \(W \) type if \(B \) is observed

\[\Rightarrow 1 - \mu = 0 \Rightarrow \mu = 1 \]

However, if \(\mu = 1 \), \(T \) type will now have incentive to deviate.

Thus this equ. does not pass the intuitive criterion.

Look at PBE B (pooling at B)

\(T \) never has incentive to deviate

\[\Rightarrow q = 0 \]

\(W \) will also not be able to profitably dev. This passes intuitive criterion.
Re-do assuming \(p = \frac{1}{2} \)

2.2

- Separating, the equations have the same analysis as when \(p = \frac{9}{10} \)

Pooling at 0

When 0 is observed, \(q = \frac{1}{3} \)

Barnie gets \(\frac{1}{2} \) from D

\(\frac{1}{3} \) from N

\[\Rightarrow \] he will mix placing probabilistic on D.

Will W deviate?

- Depends on beliefs

If \(\mu > \frac{1}{2} \), Barnie plays N

\[2(1-d) \geq 3 \] not possible, always deviates.

If \(\mu < \frac{1}{2} \), Barnie plays D

\[2(1-d) \geq 1 \Rightarrow d \leq \frac{1}{2} \]

Will W deviate?

If \(\mu < \frac{1}{2} \), Barnie plays D

\[d + (1-d)^3 \geq 0 \Rightarrow d \leq \frac{3}{2} \]
PRE:
Both types play \mathcal{Q}, Barnie mixes, placing prob. $d \leq \frac{1}{2}$ on \mathcal{D} when \mathcal{Q} is observed. Barnie plays \mathcal{D} when \mathcal{B} is observed.

$\mu \leq \frac{1}{2}, \quad q = \frac{1}{2}$

Pooling at \mathcal{B} when \mathcal{B} is observed $\mu = \frac{1}{2}$

Barnie again will mix, placing prob. d on \mathcal{D}

- Suppose $q > \frac{1}{2}$, such that if \mathcal{Q} is observed Barnie plays \mathcal{N}

will T deviate

\[d + 3(1-d) \geq 2 \implies d \leq \frac{1}{2} \]

will W deviate

\[q(1-d) \geq 3, \quad \text{no } d \text{ can prevent deviation.} \]

- Suppose $q < \frac{1}{2}$, such that if \mathcal{Q} is observed Barnie plays \mathcal{D}

will T deviate

\[d + 3(1-d) \geq 0 \implies d \leq \frac{3}{2} \]
Both Types play B. Barrie plays D when B is observed on D when D is observed.

Both Types play B. Barrie plays D when B is observed on D when D is observed.

\[\alpha(c, d) \geq 1 \Rightarrow d \leq 1/2. \]

Semi-separating.

T plays B w/ prob. \(b \) and

\[x = \frac{1}{1 + b}. \]

l is chosen to force indifference in players 2.

\[l = \frac{1}{1 + l}. \]

L = 1 \text{ not mixing back to pooling eqn.}
\[g = \frac{b}{1+b} \]

- \(g \) is chosen to force indifference.
- \(b \) is chosen sequentially.
- Just as discussed previously, both PBE and NE are always sequentially rationalized.

<table>
<thead>
<tr>
<th>Normal Form</th>
<th>(P)</th>
<th>(D)</th>
<th>(N)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD</td>
<td>1/2, 1/2</td>
<td>1/2, 1/2</td>
<td>1/2, 1/2</td>
<td></td>
</tr>
<tr>
<td>NN</td>
<td>1/2, 1/2</td>
<td>1/2, 1/2</td>
<td>1/2, 1/2</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>1/2, 1/2</td>
<td>1/2, 1/2</td>
<td>1/2, 1/2</td>
<td></td>
</tr>
<tr>
<td>DD</td>
<td>1/2, 1/2</td>
<td>1/2, 1/2</td>
<td>1/2, 1/2</td>
<td></td>
</tr>
</tbody>
</table>

- \(N = \{ (QQ, DN), (BB, ND) \} \)
Notice that player 2 will never play \(P_2 \) knowing this move as \(P_1 \) is played.

We use this information to work our way upwards from the following game.
Rolling at R

- \(q = \frac{1}{2} \)
- \(T \) yields \(\frac{1}{2} \)
- \(B \) yields \(\frac{1}{2} \)

Rolling at L

- \(0 \leq t < 2/3 \)

indifferent

how must mixing occur to make R dominant for both?

Place t prob on T, want to prevent deviation

Player 1: \(t(3) > 1 \)

\(1-t \) \(\geq 1 \)

\(3-3t \geq 1 \)

\(t \leq \frac{2}{3} \)

\(t \geq \frac{1}{3} \)

\(t \leq \frac{1}{3} \)

no t can prevent deviation.
Separating \(\Theta_2 \) goes R, \(\Theta_3 \) goes L

\[\Rightarrow \quad \Phi = 1 \]

Player 2 goes T after R

No one has incentive to deviate

PBE

Separating \(\Theta_2 \) goes L, \(\Theta_3 \) goes R

\[\Rightarrow \quad \Phi = 0 \]

B played after R

No one has incentive to deviate

PBE

Semi-Pooling

\(\Theta_2 \) always plays R

\(\Theta_3 \) plays R with prob \(R \) and L with prob \(1 - R \)

\[P = \frac{\Pr(\Theta_2 | R) \cdot \Pr(\Theta_3 | R)}{\Pr(\Theta_2 | R) \cdot \Pr(\Theta_3 | R) + \Pr(\Theta_1 | R) \cdot \Pr(\Theta_3 | R)} \]

\[= \frac{\frac{1}{2}}{\frac{1}{2} + \frac{1}{2} \cdot \frac{1}{1 + r}} \]
r is chosen to make player 2 indifferent when they see R

\[\frac{1}{1+r} = \frac{r}{1+r} \implies r = 1 \]

\[= \text{ not mixed any more!} \]

\[\text{Semi-Pooling} \]

\[\Theta_3 \text{ always plays } R \]

\[\Theta_2 \text{ plays } R \text{ with prob } r \]

\[f = \Pr(\Theta_2 | R) = \frac{r^{1/2}}{r^{1/2} + 1/2} = \frac{r}{r+1} \]

r chosen to make player 2 indifferent

\[\frac{r}{r+1} = \frac{1}{1+r} \implies r = 1 \]

\[= \text{ not mixed any more!} \]
Sequential Equilibrium

Just as before, all our PBE are sequential eqv. They are:

(A) \(\Theta_1 \) plays L
\(\Theta_2 \) and \(\Theta_3 \) play R
\text{Player 2 mixes, placing prob on Top, where}
\[1/3 < t < 1/3 \]
\text{when } R \text{ is observed}
\[\eta = 1/2, \quad \Pr(\Theta_1|R) = 0 \]

(B) \(\Theta_1 \) plays L
\(\Theta_2 \) plays R, \(\Theta_3 \) plays L
\text{Player 2 plays T when } R \text{ is obs.}
\[\eta = 1, \quad \Pr(\Theta_1|R) = 0 \]

(C) \(\Theta_1 \) plays L
\(\Theta_2 \) plays L, \(\Theta_3 \) plays R
\text{Player 2 plays B when } R \text{ is obs.}
\[\eta = 0, \quad \Pr(\Theta_1|R) = 0 \]

\text{Note: See Rubenberg + Tirole pg 344}
Thm 8.4.
Equilibrium Dominance

m is equi. dominated if

$$U_i^*(\theta) > \max_{a \in A} U_i(m, a, \theta)$$

Equi. dominance occurs when receiver assigns zero prob. to θ after observing m when,

(i) m is equi. dominated for θ
(ii) $\exists \theta'$ s.t. m is not equi. dominated.

$m \in \mathbb{L}, R^2$ \hspace{1cm} $A = \mathbb{E}, L, M, B^3$

$\text{Equ}(A)$

$$U_i^*(\theta_1) = 1$$

$$U_i^*(\theta_2) \in (1, 2)$$

$$U_i^*(\theta_3) \in (1, 2)$$

L is equi. dominated for both θ_2 and θ_3 but not $\theta_1 =>$ zero prob. must be placed on θ_2 and θ_3 when L is observed

This holds trivially since player 2 doesn't act when L is played.

R is equi. dominated for θ_1, but not θ_2 or θ_3 => zero prob. must be placed on θ_1 when R is observed. This holds

Equi. passes...
Equ. (B)

$U_i^*(\Theta_1) = 1$
$U_i^*(\Theta_2) = 3$
$U_i^*(\Theta_3) = 1$

R is Equ. dominated for Θ_1
L is Equ. dominated for Θ_2

$\Rightarrow \Pr(\Theta_1 | R) = 0$
$\Pr(\Theta_2 | L) = 0$

These both hold, the Equ. passed

Equ. (C)

$U_i^*(\Theta_1) = 1$
$U_i^*(\Theta_2) = 1$
$U_i^*(\Theta_3) = 3$

R Equ. dominated for Θ_1
L Equ. dominated for Θ_3

$\Rightarrow \Pr(\Theta_1 | R) = 0$
$\Pr(\Theta_3 | L) = 0$

These both hold, the Equ. passed
3.3 Intuitive Criterion.

Define $BR(T, a_i)$ set of all pure strategy best responses for player 2 to action a_i for beliefs $\mu(.|a_i)$ such that $\mu(T|a_i) = 1$

$$BR(\Theta, R) = \{T, H, B \}$$

$$J(a_i) = \{ \Theta : u^*(\Theta) > \max_{a_j \in BR(\Theta|J_i(a_i), a_i)} u_i(a_i, a_j, \Theta') \}$$

Then if for some $a_i, \exists \Theta' \in \Theta$ s.t.

$$u^*(\Theta') < \min_{a_j \in BR(\Theta|J_i(a_i), a_i)} u_i(a_i, a_j, \Theta')$$

the equ. fails intuitive criterion.

Equ (A)

$$J(R) = \{ \Theta \}$$

$$J(L) = \{ \Theta_0, \Theta_3 \}$$

Passes, no need to check and condition in this case.

Equ (B)

$$J(R) = \{ \Theta_1 \}$$

$$J(L) = \{ \Theta_0, \Theta_3 \}$$

R: $u^*(\Theta_3) = 1 > \min_{a_j \in BR(\Theta_0, \Theta_3, R)} u_i(R, a_2, \Theta_3) = 0$

So this passes.
Equ. (c)

\[J(R) = 3 \Theta_1 \gamma \]
\[J(L) = 3 \Theta_3 \gamma \]

R: \(U''_1(\Theta_2) = 1 \) \(\geq \min_{a_0 \in BR(\Theta_4, \Theta_5, R)} U_1(R, a_0, a_0) = 0 \)

this also passes.
\[\theta \in \{1, 2\} \]
\[q = \Pr(\theta = 2), \quad m(t) - \text{posterior} \quad \Pr(\theta = 2) \]

Utility:
\[U(w, t, \theta) = w - \frac{t}{q} \]
\[\Pi = \theta - w = m(t) \cdot q + (1 - m(t)) \cdot (1 - w) - w \]

Assume:
\[\Pi = 0 \implies w = m(t) + 1 \]

Suppose:
\[\theta = 1 \text{ type mixes between } t^{\text{**}} \text{ (prob } 1 - q) \text{ and } t^{\text{**}} \text{ (prob } q) \]
\[\theta = 2 \text{ type only plays } t^{\text{**}} \]

Consequently,
\[m(2|t) = 0 \text{ where } t \neq t^{\text{**}} \]

\[m(2|t^{\text{**}}) = \frac{\Pr(t^{\text{**}}|2) \cdot \Pr(2)}{\Pr(t^{\text{**}}|12) \cdot \Pr(2) + \Pr(t^{\text{**}}|11) \cdot \Pr(1)} \]

\[= \frac{q}{q + p(1 - q)} \]
4) continued

If the $\Theta = 1$ type is mixing it must mean that he is indifferent between the 2 outcomes.

$$1 - t^{**} = \frac{g}{\text{wage}} + 1 - t^{ss}$$

Note: t^{**} must be equal to 0, the logic is if by playing t^{**} the firm assumes the worker is type $\Theta = 1$, and provides wage $1 + \mu(2t) = 1$, then the worker's best response is to choose $t^{**} = 0$ and maximize payoff.

Thus,

$$t^{ss} = \frac{g}{g + f(1-g)}$$

For the $\Theta = 2$ type the following must hold, or he will want to deviate.

$$1 + \frac{g}{g + f(1-g)} - \frac{g}{g + f(1-g)}(\frac{1}{2}) \geq 1 + \mu(\Theta | t^0) - \frac{t^0}{2}$$
4. continued

This clearly will always hold

Equilibrium

\[t = \frac{t}{t - \frac{g + g_1 - g_2}{8} \cdot \theta} \]

\[t = \frac{g}{g + g_1 - g_2} \]

\[\text{Equilibrium:} \quad \mu = \frac{1}{2} \] when \(\theta = 0 \)

\[\mu = \frac{g}{g + g_1 - g_2} \]

\[\text{Eq}(\theta = 0) = \frac{g}{g + g_1 - g_2} \]

\[\text{where } \theta = \mu \cdot \mu \]