Homework 10

Solutions

1. Computational Exercise 5.2.
Let $L \sim \text{Erl}(3, 1)$ be the lifetime of a battery. Then, the expected inter replacement time is given by

$$E_T = E \min(3, L)$$

$$= \int_0^3 xf_L(x) \, dx + \int_3^\infty 3f_L(x) \, dx$$

$$= \int_0^3 xe^{-x} \frac{x^2}{2} + 3PL > 3$$

$$= 3 - 13.5e^{-3} \text{(using table of integrals)} = 2.3279.$$

Thus, the long run replacement rate is given by

$$\lim_{t \to \infty} \frac{N(t)}{t} = \frac{1}{E_T} = 0.4296.$$

2. Computational Exercise 5.6.
Let $\{X_n, n \geq 0\}$ be the DTMC of Example 2.4. Suppose an order has just been delivered at time 0, and $X_0 = 5$. Let T be the time when the next order is placed. Let $m_i = E_T | X_0 = i$. A first step analysis shows that

$$m_5 = 1 + 0.498 m_5 + 0.149 m_4 + 0.224 m_3 + 0.224 m_2,$$

$$m_4 = 1 + 0.498 m_4 + 0.149 m_3 + 0.224 m_2,$$

$$m_3 = 1 + 0.498 m_3 + 0.149 m_2, \quad m_2 = 1 + 0.498 m_2.$$

Solving, the expected time between two consecutive orders is given as $E_T = m_5 = 1.822$. From Example 5.3, it is clear that the number of orders placed up to time t is a renewal process. Hence, the number of orders placed per week in the long run is given by

$$\frac{1}{E_T} = 0.5488.$$

3. Computational Exercise 5.10.
Use results of Example 5.16. We have

$$E(U_1) = \frac{k}{\lambda} = 2/2 = 10 \text{ days, } \ E(D_1) = \frac{1}{\mu} = 1 \text{ days.}$$

The revenue rate is $A = $200 per day, and the repair cost rate is $B = $10 per day. Hence, from Example 5.16, the long run net revenue per day is given by

$$E(-BD_1 + AU_1) = \frac{-10 \times 24 + 200 \times 10}{10 + 1} = \frac{1760}{11} = 160$$

dollars per day.
In this case, the expected cost over a cycle is given by

\[EC_1 = 90 - \int_1^4 80(4 - t)\frac{t^2}{63} dt = 64.2857. \]

The expected length of the cycle is 3.036 as computed in the solution to Computational Problem 7.12. and the long run cost rate is given by

\[\lim_{t \to \infty} \frac{C(t)}{t} = \frac{EC_1}{ET_1} = \frac{64.2857}{3.036} = 21.1745 \text{ dollars/year}. \]

5. Computational Exercise 5.16.
We say that a new cycle starts whenever the pump starts filling an empty tank. Let \(U \), \(D \), and \(R \) be the up, down, and repair times of the oil pump, respectively. Then the cycle length is \(U + D \). When the pump is up, the tank is filling at a rate of 400 gallons/day, and at the end of the up time there are 400\(U \) gallons of oil. This oil gets consumed at a rate 100 gallons/day, hence the tank will be empty after 4\(U \) days. Hence the down time is given by \(D = \max(R, 4U) \). The cdf of \(D \) is given by \(\mathbb{P}(D < x) = \mathbb{P}(\max(R, 4U) < x = \mathbb{P}(R < x \mathbb{P}(4U < x = (1 - e^{-x})(1 - e^{-0.05x}), \)

and the expected value is given by

\[ED = \int_0^\infty \mathbb{P}(D > x) dx = \int_0^\infty (e^{-x} + e^{-0.05x} - e^{-1.05x}) dx = 20.048. \]

We have \(ET_1 = EU + D = 5 + 20.048 = 25.048 \) days. The oil in the tank increases from 0 to 400\(U \) over \([0, U]\) and then decreases linearly from 400\(U \) to zero over the interval \([U, 5U]\). Thus the average oil stock over \([0, 5U]\) is 200\(U \). Hence the storage cost over the cycle is

\[EC_1 = 0.05E(200U)(5U) = 50EU^2 = 2500 \text{ dollars}. \]

Hence, the long run cost rate is given by

\[\lim_{t \to \infty} \frac{C(t)}{t} = \frac{EC_1}{ET_1} = \frac{2500}{25.048} = 99.81 \text{ dollars/day}. \]