EVALUATION OF ANEMIAS

Definition: reduction of mass of RBC below normal.

- Men Hgb <13.5 g/dL or Hct <41
- Women Hgb <12 g/dL or Hct <36

Approach to Evaluation: Kinetic vs Morphologic Approach

1) Kinetic approach
 - Dec production → nutritional, bone marrow, suppression
 - Inc destruction → hemolysis
 - RBC loss → traumatic, occult, iatrogenic

2) Morphologic approach: by size → MCV (est RBC volume cell by cell); RDW (variety of size)

 Macrocytic: MCV >100 (Nutritional → B12, Folate, Drugs, BM)
 - B12 if decreased
 - Screen for intrinsic factor Ab (+→ pernicious; −→ malabs. i.e. celiac, IBS)
 - Schilling test
 - Stage 1 → IM B12, followed by labeled B12; 24 hour urine for radioactive labeled B12; if >7% of ingested load then it is normal b/c all binding sites occupied by unlabeled B12, and radiolabeled excreted
 - Stage 2 → only if stage 1 abnormal; give 60mg intrinsic factor, followed by B12
 - Folate (may be altered by recent dietary changes)
 - Check homocysteine → elevated 2 to impaired folate dependent conversion
 - Drugs → ETOH, hydroxyurea, MTX, TMP, 5-FU, AZT
 - Primary BM → aplastic, myelodysplastic, leukemia

 Microcytic: MCV <80 (Fe deficient, Thalassemia, Chronic Disease, Congenital)
 - Fe Deficient
 - Fe panel includes ferritin, transferrin, serum FE, TIBC, % sat
 - Often dec MCV, inc RDW
 - If ferritin dec makes diagnosis**
 - Thalassemia
 - Often dec MCV, inc RDW like Fe deficient
 - If has been longstanding microcytic always consider
 - Check Hgb electrophoresis to differentiate α and β
 - Anemia of Chronic Disease (RA, PMR, DM, Connective Tissue, Renal, Infectious)
 - Typically cytokine mediated which inhibits RBC production
 - Usually normocytic
 - Ferritin is normal or elevated
 - Serum FE dec, % sat dec, TIBC dec, normal RDW
 - Congenital
 - Sideroblastic → check smear; dimorphic RBC, sideroblasts

 Normocytic: MCV 80-100 (Blood loss, Chronic Disease, Hemolytic)
 - Check ferritin to r/o early Fe deficient; B12, Folate; renal function
 - Acute Blood Loss → trauma, melena, hematemeses, etc.
 - Anemia of Chronic Disease
 - Hemolytic
 - Check LDH → increased destruction
 - Check Indirect Bilirubin → if inc, think increased catabolism
 - Check Haptoglobin → protein that carries free Hgb, so will be dec
 - Check Retic count → >1%
 - Absolute retic count (RBC x %retic) if >100K think hemolysis
 - Corrected retic count (%retic x Hct/45 x .5) if >3 think hemolytic
 - Peripheral Smear
 - Spherocytes → hereditary spherocytosis
 - Schistocytes → microangiopathic hemolytic (TTP, HUS, DIC, heart valves)
 - Sickle → sickle cell
G6PD \rightarrow Heinz body; can order level; enzyme used in prod of glutathione which protects RBC proteins; X-linked, so predominantly male

- Coombs
 - Positive \rightarrow acquired; SLE, HUS, TTP
 - Negative \rightarrow congenital

- Primary BM disorder (associated with decreased WBC, decreased platelets)
 - Myelodysplastic \rightarrow increased RDW
 - Multiple Myeloma \rightarrow rouleaux formation
 - Aplastic \rightarrow decreased retic

Mark Rogers, DO
2006