Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits: A Multi-Ethnic Meta-Analysis of 45,891 Individuals

1 Department of Epidemiology, Biostatistics, and Occupational Health, Jewish General Hospital, McGill University, Montreal, Canada, 2 Department of Medicine, Université de Sherbrooke, Sherbrooke, Canada, 3 General Medicine Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America, 4 MRC CAITRE Centre and School of Community Medicine, University of Bristol, Bristol, United Kingdom, 5 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, 6 Genetics of Complex Traits, Peninsula Medical School, University of Exeter, Exeter, United Kingdom, 7 Genetics, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America, 8 MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom, 9 Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands, 10 Department of Epidemiology and Preventive Medicine, Regensburg University Medical Center, Regensburg, Germany, 11 Departments of Medicine and Public Health, Well Cornell Medical College, New York, New York, United States of America, 12 Department of Clinical Chemistry, University of Tampere and Tampere University Hospital, Tampere, Finland, 13 Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America, 14 Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, United States of America, 15 Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom, 16 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom, 17 Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands, 18 Centre for Medical Systems Biology, Leiden, The Netherlands, 19 Section of Molecular Epidemiology, Leiden University Medical Center and The Netherlands Genomics Initiative, The Netherlands Consortium for Healthy Aging, Leiden, The Netherlands, 20 Division of Genetic Epidemiology, Innsbruck Medical University, Innsbruck, Austria, 21 Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America, 22 Harvard School of Public Health, Boston, Massachusetts, United States of America, 23 Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, United States of America, 24 Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands, 25 Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America, 26 Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America, 27 Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America, 28 Lady Davis Institute for Medical Research, Department of Oncology, McGill University, Montreal, Canada, 29 Department of Human Genetics McGill University, Montreal, Canada, 30 Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America, 31 Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America, 32 Cardiology, Ealing Hospital National Health Service (NHS) Trust, London, United Kingdom, 33 Department of Internal Medicine, University of Lausanne, Lausanne, Switzerland, 34 Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland, 35 Epidemiology and Biostatistics, Imperial College London, London, United Kingdom, 36 Department of Clinical Genetics and Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands, 37 Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of
Washington, Seattle, Washington, United States of America, 38 Group Health Research Institute, Group Health Cooperative, Seattle, Washington, United States of America, 39 Departments of Pathology and Biochemistry, University of Vermont, Burlington, Vermont, United States of America, 40 Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, United States of America, 41 Medical Genetics Research Institute, Cedars Sinai Medical Center, Los Angeles, California, United States of America, 42 Department of Medicine, University of Turku and Turku University Hospital, Turku, Finland, 43 Department of Clinical Physiology, University of Tampere and Tampere University Hospital, Tampere, Finland, 44 Center for Biomedicine, European Academy Bozen/Bolzano (EURAC) (Affiliated Institute of the University of Lübeck, Lübeck, Germany), Bolzano, Italy, 45 Department of Neurology, General Central Hospital, Bolzano, Italy, 46 Department of Neurology, University of Lübeck, Lübeck, Germany, 47 School of Social and community medicine, University of Bristol, Bristol, United Kingdom, 48 British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom, 49 Geriatric Unit, Azienda Sanitaria Firenze (ASF), Florence, Italy, 50 Laboratory of Clinical Investigation, National Institute of Aging, Baltimore, Maryland, United States of America, 51 Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands, 52 First Department of Internal Medicine, St. Johann Spital, Paracelsus Private Medical University Salzburg, Salzburg, Austria, 53 Public Health Genomics Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, and Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland, 54 Population Studies Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland, 55 Intramural Research Program, Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America, 56 Division of General Internal Medicine, Women’s Health Clinical Research Center, University of California San Francisco, San Francisco, California, United States of America, 57 Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany, 58 Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany, 59 Klinikum Großhadern, Munich, Germany, 60 Harokopio University, Athens, Greece, 61 Collaborative Studies Coordinating Center, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America, 62 School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil, 63 Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America, 64 Department of Rheumatology and Department of Clinical Epidemiology, Leiden, The Netherlands, 65 Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, United States of America, 66 Office of Population Studies Foundation, University of San Carlos, Cebu City, Philippines, 67 Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States of America, 68 Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States of America, 69 Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America, 70 University Institute of Social and Preventative Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland, 71 Swiss Institute of Bioinformatics, Lausanne, Switzerland, 72 Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom, 73 Department of Family and Preventive Medicine, University of California San Diego, La Jolla, California, United States of America, 74 Brigham and Women’s Hospital, Boston, Massachusetts, United States of America, 75 Jackson Heart Study Coordinating Center, Jackson State University, Jackson, Mississippi, United States of America, 76 Baylor College of Medicine and Methodist DeBakey Heart and Vascular Center, Houston, Texas, United States of America, 77 Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands, 78 Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku and the Department of Clinical Physiology, Turku University Hospital, Turku, Finland, 79 Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America, 80 Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America, 81 Diabetes Research Center, Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America, 82 Chronic Disease Epidemiology and Prevention Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland, 83 Diabetes Prevention Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland, 84 Unit of General Practice, Helsinki University Central Hospital, Helsinki, Finland, 85 Folkhalsan Research Centre, Helsinki, Finland, 86 Vaasa Central Hospital, Vaasa, Finland, 87 Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland, 88 University of Washington, Seattle, Washington, United States of America, 89 National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, United States of America, 90 Departments of Medicine, Human Genetics, Epidemiology, and Biostatistics, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Canada

Abstract

Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5 × 10−8−1.2 × 10−4). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p < 3 × 10−5). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3 × 10−5, n = 22,044), increased triglycerides (p = 2.6 × 10−4, n = 93,440), increased waist-to-hip ratio (p = 1.8 × 10−3, n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4 × 10−3, n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5 × 10−3, n = 96,748) and decreased BMI (p = 1.4 × 10−4, n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.

Editor: Peter M. Visscher, The University of Queensland, Australia

Received September 30, 2011; Accepted February 3, 2012; Published March 29, 2012

Copyright © 2012 Dastani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

Adiponectin is a highly abundant adipocyte-derived plasma protein whose levels correlate inversely with a range of important clinical parameters including blood glucose, insulin resistance, proatherogenic dyslipidemia, and risk of type 2 diabetes (T2D), stroke, and coronary artery disease [1,2,3,4]. Collectively these conditions account for most of the burgeoning pandemic of...
Author Summary

Serum adiponectin levels are highly heritable and are inversely correlated with the risk of type 2 diabetes (T2D), coronary artery disease, stroke, and several metabolic traits. To identify common genetic variants associated with adiponectin levels and risk of T2D and metabolic traits, we conducted a meta-analysis of genome-wide association studies of 45,891 multi-ethnic individuals. In addition to confirming that variants at the ADIPOQ and CDH13 loci influence adiponectin levels, our analyses revealed that 10 new loci also affecting circulating adiponectin levels. We demonstrated that expression levels of several genes in these candidate regions are associated with serum adiponectin levels. Using a powerful novel method to assess the contribution of the identified variants with other traits using summary-level results from large-scale GWAS consortia, we provide evidence that the risk alleles for adiponectin are associated with deleterious changes in T2D risk and metabolic syndrome traits (triglycerides, HDL, post-prandial glucose, insulin, and waist-to-hip ratio), demonstrating that the identified loci, taken together, impact upon metabolic disease.

Results

Results of Meta-Analysis of GWAS

The meta-analysis was divided into four phases: 1) Discovery phase, which involved cohorts providing GWAS results, 2) In-silico replication phase which included additional GWAS cohorts joining our meta-analysis after the completion of the discovery phase, 3) De-novo genotyping in cohorts without GWAS genotyping and 4) Multi-Ethnic meta-analysis applying a novel method for complex trait mapping using different ethnicities.

Discovery phase in individuals of white European origin. The meta-analysis of sex-combined data from 16 GWAS (n = 29,347) of individuals of white European descent identified ten loci associated with adiponectin levels at p<5×10^{-8} (Table 1 and Figure 1A and Figure S1, Table S2); these results include the previously described associations with adiponectin at ADIPOQ (rs6810075[T]; β = 0.06, p-value = 3.60×10^{-4}), KNG1 (rs2062632[T]; β = 0.05, p-value = 2.52×10^{-10}) on 3q27.3, and CDH13 (rs12922394[T]; β = −0.1, p = 3.16×10^{-18}) on 16q23.3 (Table 1). Furthermore, we identified variants that showed genome-wide significant association in eight novel independent loci including rs9853056 (within the STAB1 gene, rs4282054 (within the NT5DC2 gene), rs13083798 (within the PBRM1 gene), rs1108842 (within the GNL3 gene), rs11235 (within the NEK1 gene), rs2710323 (within the ITIH1 gene), rs3617 (within the ITIH3 gene), and rs2535627 (within 200 Kb of ITIH4 gene) at 3p21.2; rs601339 (within the GPR109A gene) at 12q24.31; rs6488896 (within the ATP6V0A2 gene), rs7133378 (within the DAX1 gene), rs7305864 (within the CCDC92 gene), and rs7978610 (within the ZNF664 gene) at 12q24.31, which is 1.3 Mb away from GPR109A; rs2952979 (within the CIDM gene) at 16q23.2 gene; and rs731839 (within the PEPD gene) at 19q13.11. (Figure 2A–2E, Table 1).

In our analysis a common variant (rs601339, MAF = 0.18, allele G) downstream of the GPR109A gene (the putative niacin receptor) was associated with adiponectin (β = 0.04, p = 7.94×10^{-10}) and HDL-C (β = 0.03, p = 5.59×10^{-7}) in the global lipid analysis. In a coincident candidate gene analysis 11 SNPs were typed in GPR109A/B in CoLaus and LOLIPOP cohorts, containing individuals of European descent. A single nominally significant coding SNP R311C (rs7314976, MAF = 0.14) within the GPR109A gene was taken forward for replication and found to be consistently associated with adiponectin in the three cohorts (CoLaus, Fenland and MRC Ely study, n = 825, p = 4.6×10^{-7}) and HDL-cholesterol (HDL-C) in four cohorts (CoLaus, Fenland, Ely study and Lolipop, n = 18425, p = 2.9×10^{-8}) (Figure S2A, S2B). However R311C and rs601339 were not in linkage disequilibrium with each other (r2 = 0.04). Therefore the two variants represent two independent signals from the same locus but with similar effects on HDL-cholesterol and adiponectin.

In-silico follow-up phase. In the in-silico follow-up phase 468 SNPs demonstrating genome-wide significant (p<5×10^{-8}) or suggestive (p<5×10^{-6}) association with adiponectin in the discovery phase were tested for association in additional European cohorts. (Table S3). These SNPs were tested in seven additional GWAS datasets (n = 6,623 from NHS, HPFS, HABC, ERF2, LLS, GARP and ARIC studies) and the combined meta-
analysis of the discovery and follow-up in-silico GWAS datasets detected additional loci on chromosomes 1q41 near the LPLAL1 gene (rs3001032, \(p = 3.6 \times 10^{-8}\)) and chromosome 6q21.1 near the VEGF4 gene (rs9983894, \(p = 5.8 \times 10^{-12}\)) that reached genome-wide significance. While we confirmed seven loci that had reached genome-wide significance at the discovery stage (Table 1, Figure 2F and 2G, Table S2), two identified loci (3q23.1 and 12q24.31) did not remain genome-wide significant in the joint analysis of discovery and follow-up results.

De novo follow-up phase. Next, in the de-novo genotyping follow-up phase, we genotyped 10 SNPs with suggestive evidence of association (\(5 \times 10^{-9} < p < 5 \times 10^{-10}\)) from the meta-analysis of the discovery and in-silico follow-up phases in an additional 3,913 individuals. Meta-analyzing the discovery and 2 follow-up stages identified a SNP in ARL15 (rs6450176 [G]; \(B = 0.026, p = 5.8 \times 10^{-5}\)), which was initially described in a previous GWAS for adiponectin levels (Table S3) [16].

Multi-ethnic meta-analysis. To identify loci influencing adiponectin levels in non-European individuals we performed an additional analysis in 4,232 individuals from an African American population and 1,776 individuals from an East Asian population. In the African American populations, only associations at the ADIPOQ locus reached genome-wide significance, while in the East Asian population there was evidence of association at the ADIPOQ and CDH13 loci (Table S4). Subsequently, we performed a meta-analysis that combined all available GWAS including those of white European origin, African American and East Asian ancestry using novel method MANTRA [24]. This analysis identified two additional loci in or near IRS1 gene on 2q36.3 and at 6q24.1 within a gene desert (Table 2, Figure 1B).

Secondary GWAS analyses. We next performed meta-analysis of the GWAS data in women (n = 16,685) and men (n = 12,662) separately (Figure S2A, S2B, Tables S5 and S6). Although no novel loci reached genome-wide significance in women or men separately, three loci (chromosome 3p, 8 and 12) associated with adiponectin levels in the sex-combined analysis showed evidence of association (\(p < 5 \times 10^{-5}\)) in women (Figure S3). Since different assays were used to measure adiponectin levels, we next tested whether stratification by assay rendered similar results and found the results were highly concordant with the combined analysis. GWAS for high molecular weight adiponectin in the CHS study (n = 2,718) identified 2 SNPs in ADIPOQ (rs17300539, \(p = 3.0 \times 10^{-16}\)) and CMIP (rs2927307, \(p = 2.7 \times 10^{-8}\)). These two genes are located within the loci identified in our discovery meta-analysis of adiponectin levels.

<table>
<thead>
<tr>
<th>Region</th>
<th>Chr/position</th>
<th>NEA/NEA</th>
<th>EAF*</th>
<th>Beta(\beta)</th>
<th>P</th>
<th>I2</th>
<th>n</th>
<th>SE</th>
<th>P</th>
<th>I2</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery Phase Results</td>
<td>Joint Analysis Phase*</td>
<td></td>
</tr>
<tr>
<td>LPLAL1</td>
<td>rs3001032</td>
<td>1q41</td>
<td>0.02</td>
<td>0.005 1.98E-06 0 29,321</td>
<td>-0.02</td>
<td>0.004 3.6E-08 0 35,930</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GNL3</td>
<td>rs1108842</td>
<td>3p21.1</td>
<td>0.003</td>
<td>0.004 3.6E-11 0.3 29,338</td>
<td>0.03</td>
<td>0.004 1.39E-13 0.2 35,962</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSC22D2</td>
<td>rs1597466</td>
<td>3q25.1</td>
<td>0.008</td>
<td>0.008 1.88E-08 0 29,319</td>
<td>-0.03</td>
<td>0.007 1.62E-06 0.1 35,794</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADIPOQ</td>
<td>rs6810075</td>
<td>3q27.3</td>
<td>0.005</td>
<td>0.005 3.60E-41 0 29,140</td>
<td>0.06</td>
<td>0.006 1.19E-43 0 35,749</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEGFA</td>
<td>rs998584</td>
<td>6q21.1</td>
<td>0.005</td>
<td>0.005 5.8E-08 0.3 28,167</td>
<td>0.03</td>
<td>0.005 3.25E-08 0 34,108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRIB1</td>
<td>rs2980879</td>
<td>8q24.13</td>
<td>0.003</td>
<td>0.003 1.08E-08 0 24,084</td>
<td>0.03</td>
<td>0.005 7.13E-09 0 30,708</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDE3A</td>
<td>rs7955516</td>
<td>12q12.2</td>
<td>0.003</td>
<td>0.003 2.43E-08 0.1 29,178</td>
<td>0.02</td>
<td>0.004 4.45E-08 0 34,108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPR109A</td>
<td>rs601339</td>
<td>12q24.31</td>
<td>0.006</td>
<td>3.87E-11 0 29,325</td>
<td>0.03</td>
<td>0.005 7.81E-10 0.3 35,947</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNAH10</td>
<td>rs7133378</td>
<td>12q24.31</td>
<td>0.005</td>
<td>0.005 1.29E-09 0 29,223</td>
<td>-0.02</td>
<td>0.004 6.21E-07 0.5 35,697</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMIP</td>
<td>rs2925979</td>
<td>16q23.2</td>
<td>0.005</td>
<td>0.005 1.87E-18 0 29,347</td>
<td>-0.04</td>
<td>0.005 1.21E-20 0 35,700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDH13</td>
<td>rs12292349</td>
<td>16q23.3</td>
<td>0.011</td>
<td>0.011 3.16E-18 0.3 24,466</td>
<td>-0.08</td>
<td>0.010 1.99E-15 0.4 31,089</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEPD</td>
<td>rs713839</td>
<td>19q13.11</td>
<td>0.005</td>
<td>2.20E-13 0.3 29,166</td>
<td>-0.03</td>
<td>0.004 7.97E-12 0.4 35,771</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All SNPs achieving genome-wide significance in the joint analysis phase are marked in italics.

Joint analysis indicates results from the meta-analysis of discovery and follow-up in-silico and de-novo phases.

**When possible, plausible biological candidate genes have been listed; otherwise, the closest gene is designated.

†Lead SNP is the SNP with the lowest p-value for each locus.

*Betas are estimated from models using the natural log transformed adiponectin.

EAF: Effect allele frequency.

EA/NEA: Effect allele, Non-effect allele.

Beta: de-novo \(p\)-value for each locus.
SNPs often are proxies for the lead SNPs from the GWAS, however, this relationship may also be influenced through mechanisms that are independent from gene expression, such as gene function.

We next identified that mRNA levels of 18 genes arising from six candidate loci were correlated with circulating adiponectin levels (Table 4). Since circulating adiponectin levels may be associated with a surplus of adipocyte transcripts we next tested for enrichment of signal from the candidate loci. There were 133 transcripts in the identified candidate regions, of which 8.2% (11/133) were associated with adiponectin levels at an array-wide level of significance ($p = 5 \times 10^{-6}$), while 7.5% of the 24k probes on the entire array exceeded the same p-value threshold, indicating there was therefore no additional enrichment of signal at these candidate loci.

T2D and Metabolic Traits

Using data from several large-scale GWAS consortia, some of the significantly associated variants identified here demonstrated associations with T2D and its related traits (Table S7A, S7B, S7C, and S7D). Several individual SNPs showed evidence for association with T2D and various metabolic traits after accounting for the number of statistically independent SNPs (p-value threshold of 5×10^{-6}) among the SNPs that were genome-wide significant for adiponectin. These include associations with HDL-C ($n = 104$ SNPs), triglycerides (TG) ($n = 65$ SNPs), total cholesterol (TC, $n = 12$ SNPs), LDL-cholesterol (LDL–C, $n = 11$ SNPs), and waist-to-hip ratio (WHR) ($n = 65$ SNPs) [26]. (However, we note that since sample sizes are different across different consortia power to identify associations is not consistent.) Among these, coding and intronic variants in STAB1 and NT5DC2 genes were associated with WHR and HDL-C, while the variants 1 Mb near TRIB1 were associated with all lipid traits. The coding and intronic variants ariants in the locus on chromosome 12 harboring ZNF664, CCDC92, and DNAH10 showed evidence of association with WHR, HDL-C, and TG. Finally, variants in the PEPD gene were associated with TG.

We next calculated a multi-SNP genotypic risk score based genome-wide significant SNPs from the discovery phase. This multi-SNP genotypic risk score explained 5% of the variance of natural log-transformed adiponectin levels. We then tested the association of this risk score with risk of T2D and metabolic related traits. The multi-SNP genotypic risk score was associated with increased risk for T2D ($\beta = 0.3$, $p = 4.3 \times 10^{-5}$), where β is the average additive effect of adiponectin-decreasing risk alleles on the variance.
Figure 2. Regional plots of eight newly discovered genome-wide significant chromosomal regions associated with adiponectin concentrations in European populations. A) chromosome 16q23.2, B) chromosome 19 q13.11 C) Chromosome 3p21.1, D) two loci on chromosome 12q24.31, E) chromosome 8q24.13, F) chromosome 6p21.1, and G) chromosome 1q41. In each panel, purple diamonds indicate the top
log odds ratio of T2D), increased TG ($\beta = 0.25$, $p = 2.6 \times 10^{-10}$), increased WHR adjusted for BMI ($\beta = 0.18$, $p = 1.8 \times 10^{-5}$), increased post-prandial glucose ($\beta = 0.25$, $p = 0.01$), increased fasting insulin ($\beta = 0.05$, $p = 0.01$), homeostatic model assessment-insulin resistance (HOMA-IR) ($\beta = 0.04$, $p = 0.047$), and with lower HDL-C concentrations ($\beta = -0.24$, $p = 4.5 \times 10^{-13}$) and decreased BMI ($\beta = -0.16$, $p = 1.4 \times 10^{-3}$), (Table 5).

Discussion

In this comprehensive multi-ethnic analysis of the genetic influences on adiponectin levels and their impact on metabolic traits and T2D, we have identified 10 novel loci and confirmed the associations of variants in the ADIPOQ and C1DHI3 loci with adiponectin levels. The adiponectin risk alleles were associated with T2D and related metabolic traits such as BMI, WHR, TG, HDL-C, 2-hour glucose, HOMA-IR and fasting insulin. These findings demonstrate that adiponectin, T2D and metabolic syndrome have a shared allelic architecture.

Biological Relevance of the GWAS Loci

In the first step toward understanding the biological relevance of the identified regions, we examined the genes harbored by the associated loci using human disease and animal databases. Although some of the genes in these loci do not have a known function, several signify diverse biological functions.

On chromosome 1, the lead SNP was located 300 kb from the LYPAL1, a protein that regulates phospholipids on cellular membranes. Independent efforts have also identified this locus in other metabolic/obesity related traits GWAS: first with WHR (rs2605100; $r^2 = 0.49$ [21] and rs4846567; $r^2 = 0.55$ [27] respectively with the lead adiponectin SNP, rs3001032), and more recently with fasting insulin by a joint meta-analysis including the interaction between SNP and BMI (MF Hivert for the MAGIC investigators, personal communication). In the same report by MAGIC, variants near IRS1 (insulin receptor substrate 1) and PEPPD (a protein that hydrolyzes dipeptides and tripeptides) have also been associated with fasting insulin at genome wide significant levels, demonstrating a close link between adiponectin regulation and insulin resistance pathways. Moreover, both IRS1 and PEPPD have been associated with T2D (IRSI in DIAGRAM [28] and PEPPD in a Japanese population [29]; $p = 9.3 \times 10^{-12}$ and $p = 1.4 \times 10^{-5}$, respectively).

The lead SNP at 3p21.1 falls within GNL3 that is located in a genomic region containing many genes which could have potential functions in metabolism. Our data provide evidence that adiponectin levels were correlated with human adipocyte mRNA levels of many genes in this region (GLYCTK, SEML3G, STABI1, PBRM1, SFMBT1; see Table 4). However, this association does not imply a direct influence of these genes on adiponectin level. Among those genes, STABI1 encodes for stabilin 1, described as an endocytic receptor for advanced glycation end products and may have a function in angiogenesis, lymphocyte homing, cell adhesion, or receptor scavenging for acetylated low-density lipoprotein [30].

Interestingly, several of the genes near lead genome-wide significant SNPs have been implicated in angiogenesis, which might be important for adipose tissue expansion, highlighting the recurring theme of “adipose tissue expandability” in the genetic origins of obesity-related complications [31]. For example, VEGFA is the vascular endothelial growth factor A gene, known in a variety of vascular endothelial cell functions, such as angiogenesis and maintenance of the glomerular endothelium in nephrons [32]. Variants in this gene are also associated with diabetic retinopathy and WHR [27,33]. Moreover, the product of VEGFA interacts with resveratrol, which has been shown to have a beneficial influence in some metabolic traits, including diabetes [34]. Rodent studies show that resveratrol decreases blood glucose, blood insulin, and glycated hemoglobin, as well as increases insulin sensitivity in animals with hyperglycemia (reviewed in [35]). Resveratrol also inhibits TNF-α-induced reductions in adiponectin levels in 3T3-L1 adipocytes [36]. Furthermore, it has been shown that resveratrol modulates adiponectin expression and improves insulin sensitivity, likely through the inhibition of inflammatory-like response in adipocytes [37]. At this locus, VEGFA mRNA levels in adipocytes were the strongest association with adiponectin levels (Table 4). Also likely involved in vascular biology, TRIB1 encodes a G protein-coupled receptor-induced protein interacting with MAP kinases that regulates proliferation and chemotaxis of vascular smooth muscle cells [38]. TRIB1 expression was shown to be elevated in human atherosclerotic arteries [39]. Several variants (rs2954029, rs2954021, rs17321515; all in moderate LD with our lead SNP) in the TRIB1 gene have been associated with HDL-C, LDL-C and CHD risk in European and Asian populations [22,40,41,42,43]. These two loci (TRIB1 and VEGFA) argue for the importance of vascular biology in adiponectin regulation as underlined previously by findings of adiponectin levels associated with variants near C1DHI3 (a receptor for adiponectin expressed by endothelial smooth muscle) [44].

All three homologous genes GPR109A/B/31 located on chromosome 12 are predominantly expressed in adipocytes and mediate antilipolytic effects [45]. Our eQTL results (Table 3) and the correlation between mRNA and adiponectin levels (Table 4) argue strongly for a role of GPR109A at this locus. GPR109A (also known as NIAIR1) is a receptor with a high-affinity, concentration-dependent response to nicotinic acid (niacin) [45]. Treatment by niacin increases serum adiponectin levels by up to 94% in obese men with metabolic syndrome in a time- and dose-dependent manner [46]. Functional studies in GPR109A receptor knockout mice demonstrate that niacin increases serum total and HMW adiponectin concentrations and decreases lipolysis following GPR109A receptor activation [47]. Moreover, a recent meta-analysis on cohorts containing extremes of HDL-C provided evidence suggestive of association in GPR109A/B/31 [48].

Finally, variants in ZNF664 have been associated with CHD, HDL-C and TG levels in a large meta-analysis of over 100,000 individuals of European ancestry [22]. The sex heterogeneity observed in this study is comparable to our finding that the more loci associated with adiponectin at genome wide significance level have been shown in female stratified analysis.

Taken together, the loci identified in this large-scale GWAS for adiponectin levels highlight many genes with demonstrated relationships with metabolic disease.

Shared Allelic Architecture of Adiponectin Levels and Metabolic Traits

Using a multi-SNP genotypic risk score we attempted to understand if the allelic architecture of adiponectin levels was shared with T2D and metabolic traits. This risk score was...
Table 2. Genome-Wide Significant SNPs from the Sex-Combined Multi-Ethnic Meta-Analysis.

<table>
<thead>
<tr>
<th>Nearby*</th>
<th>Lead SNP;</th>
<th>Gene region chr/position†</th>
<th>EA/NEA*</th>
<th>EAF†† (CEU/EA/AA)</th>
<th>Multi-Ethnic Fixed Effects Meta-analysis</th>
<th>Multi-Ethnic Random Effects Meta-analysis</th>
<th>MANTRA</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Beta (SE)</td>
<td>pvalue</td>
<td>Q-Value</td>
<td>I2</td>
<td>Beta (SE)</td>
<td>pvalue</td>
</tr>
<tr>
<td>LYPAL1</td>
<td>rs2791553</td>
<td>1q41 1/217742665 G/A</td>
<td>0.6/0.46/0.54</td>
<td>−0.02(0.004)</td>
<td>4.91E-07</td>
<td>25.18</td>
<td>0</td>
<td>−0.02(0.004)</td>
</tr>
<tr>
<td>IRS1</td>
<td>rs925735</td>
<td>2q36.3 2/226878784 G/C</td>
<td>0.64/0.89/0.74</td>
<td>−0.02(0.004)</td>
<td>1.88E-08</td>
<td>22.15</td>
<td>0.01</td>
<td>−0.02(0.004)</td>
</tr>
<tr>
<td>GNL3</td>
<td>rs2590838</td>
<td>3p21.1 3/52597126 G/A</td>
<td>0.51/0.34/0.54</td>
<td>−0.03(0.004)</td>
<td>4.08E-15</td>
<td>28.85</td>
<td>0.06</td>
<td>−0.03(0.004)</td>
</tr>
<tr>
<td>ADIPOQ</td>
<td>rs6810075</td>
<td>3q27.3 3/188031259 T/C</td>
<td>0.93/1.086</td>
<td>0.06(0.004)</td>
<td>1.10E-43</td>
<td>27.44</td>
<td>0.02</td>
<td>0.06(0.004)</td>
</tr>
<tr>
<td></td>
<td>rs592423</td>
<td>6q24.1 6/139882386 C/A</td>
<td>0.54/0.36/0.41</td>
<td>0.02(0.004)</td>
<td>3.59E-07</td>
<td>15.46</td>
<td>0</td>
<td>0.02(0.004)</td>
</tr>
<tr>
<td>TTRBI</td>
<td>rs2980179</td>
<td>8q24.13 8/126550657 T/A</td>
<td>0.69/0.77/0.67</td>
<td>0.03(0.004)</td>
<td>9.91E-10</td>
<td>21.08</td>
<td>0</td>
<td>0.03(0.004)</td>
</tr>
<tr>
<td>GP10109A</td>
<td>rs601339</td>
<td>12q24.31 12/121740696 G/A</td>
<td>0.19/0.39/0.31</td>
<td>0.03(0.003)</td>
<td>3.77E-09</td>
<td>36.11</td>
<td>0.25</td>
<td>0.03(0.006)</td>
</tr>
<tr>
<td>CMP</td>
<td>rs2925979</td>
<td>16q23.2 16/80092291 T/C</td>
<td>0.3/0.43/0.31</td>
<td>−0.04(0.004)</td>
<td>3.12E-21</td>
<td>23.12</td>
<td>0</td>
<td>−0.04(0.004)</td>
</tr>
<tr>
<td>CDH13</td>
<td>rs12051272</td>
<td>16q23.3 16/81220789 T/G</td>
<td>0.03/0.33/0.03</td>
<td>−0.26(0.017)</td>
<td>4.74E-51</td>
<td>39.17</td>
<td>0.62</td>
<td>−0.26(0.032)</td>
</tr>
<tr>
<td>PEPD</td>
<td>rs4805885</td>
<td>19q13.11 19/38597963 T/C</td>
<td>0.39/0.64/0.41</td>
<td>−0.03(0.004)</td>
<td>1.65E-11</td>
<td>34.94</td>
<td>0.23</td>
<td>−0.03(0.005)</td>
</tr>
</tbody>
</table>

The novel loci identified using Multi-Ethnic Meta-analysis (that were not identified in the European only analysis) are listed in **bold**.

*When possible, plausible biological candidate genes have been listed; otherwise, the closest gene is designated.
†Lead SNP is the SNP with the lowest p-value for each locus.
‡Positions are relative to Human Genome NCBI Build 36.
§log_{10} Bayes factor (BF) from the MANTRA analysis. A log_{10} BF of 6 and higher was considered as a conservative threshold for genome-wide significance.
††The posterior probability of heterogeneity between studies.
*EA: effect allele, NEA: non-effect allele.
**EAF: Frequency of effect allele in CEU, East Asian, and AA, populations respectively.
doi:10.1371/journal.pgen.1002607.t002
were removed from the analysis, the association of the genotypic
explained by SNPs at the
SNPs since BMI is strongly related to adiponectin levels [49,50].

In our adiponectin GWAS, BMI was included
unexpectedly, adiponectin decreasing alleles were associated with
insulin resistance and the metabolic syndrome. However,
associated with increased risk of T2D and traits associated with
insulin resistance and the metabolic syndrome. However, unexpectedly, adiponectin decreasing alleles were associated with a decrease in BMI. In our adiponectin GWAS, BMI was included as a covariate in order to avoid direct identification of obesity
traits associated with increased risk of T2D and components of the metabolic syndrome, we
considered. Nonetheless, in aggregate, these results provide strong
evidence that the genetic determinants of adiponectin levels are
shared with metabolic disease, and in particular, traits related to
insulin resistance.

Table 3. The Association of Lead Genome-Wide Significant SNPs for Adiponectin with mRNA Levels of Their Nearest Gene.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Lead SNP- Cis-eQTL Chr</th>
<th>Transcript Start Site</th>
<th>Transcript End Site</th>
<th>EA</th>
<th>EAF</th>
<th>Beta (SE)</th>
<th>P-Exp</th>
<th>P-GWAS</th>
<th>lead SNP-GWAS r2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTDC2</td>
<td>rs13081028 3</td>
<td>52533424</td>
<td>52544133</td>
<td>G</td>
<td>0.444</td>
<td>0.14(0.02)</td>
<td>1.32E-19</td>
<td>1.05E-09</td>
<td>rs1108842 0.84</td>
</tr>
<tr>
<td>GPR109A</td>
<td>rs2454722* 12</td>
<td>121778105</td>
<td>121781082</td>
<td>G</td>
<td>0.166</td>
<td>−0.15(0.03)</td>
<td>1.71E-09</td>
<td>3.87E-11</td>
<td>rs601339 1</td>
</tr>
<tr>
<td>CAC92</td>
<td>rs10773049 12</td>
<td>122986907</td>
<td>123023116</td>
<td>T</td>
<td>0.611</td>
<td>−0.15(0.02)</td>
<td>8.09E-22</td>
<td>2.67E-08</td>
<td>rs7133378 0.02</td>
</tr>
<tr>
<td>ZNF664</td>
<td>rs825453 12</td>
<td>123074711</td>
<td>123065922</td>
<td>T</td>
<td>0.615</td>
<td>−0.04(0.01)</td>
<td>4.51E-05</td>
<td>4.03E-08</td>
<td>rs7978610 0.03</td>
</tr>
<tr>
<td>PEPD</td>
<td>rs8182584 19</td>
<td>38569694</td>
<td>38704639</td>
<td>T</td>
<td>0.364</td>
<td>−0.13(0.02)</td>
<td>9.96E-10</td>
<td>6.64E-11</td>
<td>rs731839 1</td>
</tr>
</tbody>
</table>

‡Lead SNP is the SNP with the lowest p-value for each gene in gene expression data.
p-value for lead SNP in meta-analysis from discovery phase.

As a note of caution for Mendelian randomization studies, which may be prone to erroneous conclusions if pleiotropic effects of tested variants are not considered. Nonetheless, in aggregate, these results provide strong
evidence that the genetic determinants of adiponectin levels are
shared with metabolic disease, and in particular, traits related to
insulin resistance.

We note that there are several strengths and limitations of this study. Our main findings, identifying genetic determinants of adiponectin levels, are based on the largest meta-analysis to date and include results from three ethnicities. The availability of expression data from human adipose tissue permitted the association of identified SNPs with mRNA levels at candidate genes and, in turn, correlation of these mRNA levels with circulating adiponectin itself. While access to the data from large
corpora permitted assessment of the relevance of the identified
SNPs to T2D and components of the metabolic syndrome, we
note that a subset of the cohorts included in our GWAS were also included in these external consortia. However, we note that even if we
assume that all ADIPOGen study participants were included in
the external consortia, for cohorts participating in both studies,
the majority of data in these external consortia still arises from
study participants not present in ADIPOGen (minimum percent of
overlap between adiponectin levels and these traits are spurious.

Furthermore, we suggest that locus, 6q24,1, identified only through
multi-ethnic meta-analysis using MANTRA and not confirmed
through fixed and random effects meta-analysis, be replicated for
confirmation of this finding.

In conclusion, the data presented in this study provide strong
evidence of association for 10 novel loci for adiponectin levels.
Further analyses confirmed that the level of expression of some of these candidate genes in human adipocytes correlated directly with adiponectin levels. A multi-SNP genotypic risk score, and several of the identified variants, directly influence parameters of the metabolic syndrome and, in particular, markers of insulin resistance. These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.

Materials and Methods

Ethical Consideration

All participants provided informed written consent. The research protocol of all studies were reviewed and approved by institutional ethics review committees at the involved institutions.

Study Design

Our study consisted of three stages. First, in the discovery stage we performed a meta-analysis of the GWAS summary statistics of 16 studies involving 29,347 participants of white European origin to detect SNPs that are associated with adiponectin levels. All signals with \(p < 5 \times 10^{-6} \) were followed up in seven additional cohorts (\(n = 6,623 \)) with GWAS data \((n = 35,355) \) for the combined analysis in Europeans. We also performed a multi-ethnic meta-analysis by combining summary statistics from the 16 studies involving 29,347 participants of white European origin and 436 individuals \((n = 23) \), family-based \((n = 4) \), or case-control \((n = 4) \) studies. The age of participants ranged from 10 to 95 years. Adiponectin levels were measured using ELISA or RIA methods. More details on the study cohorts and adiponectin measurement are presented in Text S1 and Table S1. In addition, genotyping of four coding and tagging SNPs in the candidate genes, \(\text{GPR109A} \) and \(\text{GPR109B} \), was undertaken in samples from the Lausanne, Lolipop, MRC Ely, and Fenland cohorts.

Genotyping and Imputation

All cohorts were genotyped using commercially available Affymetrix or Illumina genome-wide genotyping arrays. Quality control was performed for each study independently and genotype imputation was carried out using IMPUTE, MACH, BimBam or Beagle with reference to either the Phase II CEU, CEU+YRI, or CHB+JPT+CEU HapMap according to the origin of population. Imputation of East Asian genotypes was undertaken by first masking genotypes of 200 SNPs and then imputing them based on the CEU+CHB+JPT panel from HapMap. This resulted in an allelic concordance rate of \(\approx 96.7 \% \). For the African Americans, a combined CEU+YRI reference panel was created. This panel included SNPs segregating in both CEU and YRI, as well as SNPs of the first stage also associated with mRNA levels of nearest gene(s) expressed using adipose tissue of 776 European women.

Study Populations

In total, 45,891 individuals from 26 European and 7 non-European cohorts participated in the different phases of this meta-analysis. Participating cohorts were either population-based \((n = 23) \), family-based \((n = 4) \), or case-control \((n = 4) \) studies. The age of participants ranged from 10 to 95 years. Adiponectin levels were measured using ELISA or RIA methods. More details on the study cohorts and adiponectin measurement are presented in Text S1 and Table S1. In addition, genotyping of four coding and tagging SNPs in the candidate genes, \(\text{GPR109A} \) and \(\text{GPR109B} \), was undertaken in samples from the Lausanne, Lolipop, MRC Ely, and Fenland cohorts.

| Table 5. Results of Association of Multi-SNP Genotypic Risk Score with Diabetes and Related Traits. |
|---|---|---|---|---|
| Trait | N | Effect(95% CI) | P | Consortium |
| T2D** | 22,044 | 0.301 (0.09, 0.51) | 4.3E-03 | DIAGRAM* |
| BMI (SD units) | 121,335 | -0.162 (-0.25, -0.08) | 1.4E-04 | GIANT |
| WHR* | 77,167 | 0.177 (0.1, 0.26) | 1.8E-05 | GIANT |
| Percent Fat | 34,853 | -0.052 (-0.15, 0.05) | 0.31 | Body Fat Percent |
| Fasting Glucose (mmol/L) | 46,186 | 0.011 (-0.03, 0.05) | 0.58 | MAGIC |
| Fasting Insulin** (pmol/L) | 38,238 | 0.05 (0.01, 0.09) | 1.5E-02 | MAGIC |
| HomaB | 36,466 | 0.033 (0, 0.07) | 5.1E-02 | MAGIC |
| Homa IR | 37,037 | 0.042 (0, 0.08) | 4.7E-02 | MAGIC |
| 2hr Glucose** (mmol/L) | 15,234 | 0.245 (0.06, 0.44) | 1.1E-02 | MAGIC |
| HbA1C (%) | 35,908 | -0.002 (-0.04, 0.03) | 0.91 | MAGIC |
| TG**(SD units) | 93,440 | 0.248 (0.18, 0.31) | 2.6E-14 | GLGC |
| HDL-C** (SD units) | 96,748 | -0.243 (-0.31, -0.18) | 4.5E-13 | GLGC |
| LDL-C (SD units) | 92,348 | 0.023 (-0.05, 0.09) | 0.52 | GLGC |
| TC (SD units) | 97,021 | 0.0003 (-0.07, 0.07) | 0.99 | GLGC |

*Effect is mean change in trait or disease per adiponectin-decreasing allele.

**Significantly associated trait is coded in bold.

doi:10.1371/journal.pgen.1002607.t005
segregating in one panel and monomorphic and non-missing in the other (2.74 million SNPs). Due to the overlap of African American individuals on the Affymetrix 6.0 and IBC arrays [51], it was possible to analyze imputation performance at SNPs not genotyped on Affymetrix 6.0. For imputation based on Affymetrix data, the use of the CEU+YRI panel resulted in an allelic concordance rate of ~95.8% (calculated as 1−0.5 * (imputed−dosage−chip dosage)). This rate is comparable to rates calculated for individuals of African descent imputed with the HapMap 2 YRI individuals. Table S1 summarizes the genotyping methods used for each cohort, genotype-calling algorithms, imputation algorithms and exclusion thresholds. SNP-level quality control metrics were applied prior to meta-analysis for each cohort. These were: call rate ≥95%, minor allele frequency (MAF) ≥1%, Hardy-Weinberg equilibrium (HWE) p > 10−6, and quality measures for imputed SNPs (r² ≥0.3, or proper info ≥0.4, for cohorts imputing their data with MACH and IMPUTE, respectively).

Eleven coding and tagging variants in two candidate genes of pharmaceutical importance (GPR109A encoding the niacin receptor and GPR109B) were genotyped in a parallel study in Lausanne, MRC Ely, and Fenland white subjects. Genotyping was performed using a KASPar-On-Demand SNP Genotyping Assay (KBioscience Ltd., Hoddesdon, UK). In Lausanne and Lollipop samples the genotyping assay was carried out on 3.75 ng of genomic DNA in 1 μl 1536-well plate reactions, dispensed with a Meridian, microfluidic dispenser (KBioscience Ltd., Hoddesdon, UK), thermocycled using a Hydrocycler (KBioscience Ltd., Hoddesdon, UK). A Pherestar (BMG GmbH, Germany) was used for end-point detection and Kraken-LIMS (KBioscience Ltd., Hoddesdon, UK) was used for automated allele calling. In MRC Ely and Fenland samples, the genotyping assay was carried out on 10 ng of genomic DNA in 5 μl 384-well plate reactions using a G-Storm GS4 Thermal Cycler (GRI, Rayne, UK). The ABI PRISM 7900HT Sequence Detection System (Applied Biosystems, Warrington, UK) was used for end-point detection and allele calling.

Statistical Analysis

Genome-wide association studies. All cohorts independently tested for the additive genetic association of common (MAF > 1%) genotyped and imputed SNPs with natural log transformed adiponectin levels, while adjusting for age, sex, body mass index (BMI), principal components of population stratification and study site (where appropriate), and for family structure in cohorts with family members [49,50,52]. The analyses were performed for men and women combined, as well as for men and women separately. The Cardiovascular Health Study cohort (CHS) also provided GWA results for high molecular weight (HMW) adiponectin using the same methods as described above.

Meta-analysis of GWAS. The meta-analysis was performed by two analysts independently each using different methods; inverse variance-weighted methods using both fixed and random effect models available through either the METAL http://www.sph.umich.edu/csg/abecasis/software/mtal/ or GWAMA version 2.0.5 http://www.well.ox.ac.uk/gwama/ software packages [53]. Summary statistics were crosschecked to ensure consistency of results. Prior to the meta-analysis, study-specific summary statistics were corrected using genomic control (lambda range = 0.99–1.25) and the overall meta-analytic results were additionally corrected for genomic control (lambda = 1.06). To examine whether associations with adiponectin were sex-specific, we performed meta-analyses for men and women separately. A P-value threshold of 5 × 10−8 was considered to be genome-wide significant. Ethnicity-specific meta-analyses were performed for white European and non-European populations separately, using the same methods as described above.

Presence of heterogeneity in the meta-analysis was assessed by the I² statistic and Q-test [54]. Since cohorts measured adiponectin concentrations using either RIA or ELISA methods, we also performed a GWA meta-analysis stratified by the method of measurement to test whether this contributed to heterogeneity.

Follow-up phase. The follow-up phase comprised two stages; in-silico follow-up and de-novo follow-up.

—In silico follow-up: 468 SNPs with \(p < 5 \times 10^{-6} \) from the discovery phase (which includes both genome-wide significant \(n = 196, p < 5 \times 10^{-8} \) and “suggestive” \(n = 272, 5 \times 10^{-5} < p < 5 \times 10^{-3} \) SNPs Table S3) were tested for their association in 6,623 individuals from seven additional cohorts with GWAS data that joined the consortium after the discovery stage had been finalized.

—De novo follow-up: We next selected the lead SNP arising from selected loci from the joint analysis of the discovery and in-silico follow-up phase with p-values greater than 5 × 10−6 but less than 5 × 10−8 and genotyped 10 SNPs in 3,164 samples from the SAPHIR cohort and an additional subgroup of the KORA cohort. Finally, these same SNPs, or their proxy SNPs (\(n = 2 \)), were tested for association in the THISEAS cohort (\(n = 738 \)), which had been genotyped using the Metabochip [55]. Study-level summary statistics from the follow-up phases were meta-analyzed with the data from the discovery phase.

Multi-ethnic meta-analysis. In order to perform a meta-analysis of GWAS data from cohorts of different ethnic backgrounds, we utilized the novel MANTRA (Meta-Analysis of Trans-ethnic Association studies) software [24]. This method combines GWAS from different ethnic groups by taking advantage of the expected similarity in allelic effects between the most closely related populations. Fixed-effects meta-analysis assumes the allelic effect to be the same in all populations, and cannot account for heterogeneity between ethnic groups. Conversely, random effects meta-analysis assumes that each population has a different underlying allelic effect, however, populations from the same ethnic group would be more homogeneous than those that are more distantly related. To address this challenge we accounted for the expected similarity in allelic effects between the most closely related populations by means of a Bayesian partition model. For each variant, allelic effects and corresponding standard errors are estimated within each population under the assumption of an additive model. Populations are then clustered according to their similarity in terms of relatedness as measured by the mean allele frequency difference at 10,000 independent SNPs, and to their allelic effects at the variant. If all populations are assigned to the same cluster, this is equivalent to a fixed allelic effect across all populations (i.e. no trans-ethnic heterogeneity). The posterior distribution of the allelic effect in each population under the Bayesian partition model is approximated by means of a Monte-Carlo Markov chain algorithm. Evidence in favor of association of the trait with the variant was assessed by means of a Bayes’ factor (BF). A log10 BF of 6 or higher is considered a relatively conservative threshold for genome-wide significance. We also performed meta-analysis by using both random and fixed effects models including all ethnicities. Those loci that achieved both a BF > 6 in MANTRA and a P-value less than 5 × 10−8 in multiethnic analysis are presented in Table 2.

Association of Genome-Wide Significant SNPs with Gene Expression (Stage 2)

In order to identify cis-expression quantitative trait loci (cis-eQTLs) and test whether mRNA levels of candidate genes arising from our GWAS were associated with adiponectin levels, we used...
expression profiles in human adipocytes from the Multiple Tissue Human Expression Resource (MuTHER) Consortium, (856 female twins from the UK) [25]. mRNA expression profiles from subcutaneous fat and genome-wide genotypes were available for 776 individuals and circulating adiponectin levels for 436 of these women. We note that while adiponectin levels were measured at an earlier time point than the fat biopsies, the BMI at time of adipose expression measurement and time of adiponectin measurement was highly correlated (r² = 0.9).

cis-eQTLs were defined as associations between SNPs and a transcript within 1 Mb of the identified SNP. To correct for multiple testing, we used QVALUE software [56], and estimated that a genome-wide false discovery rate of 1% corresponds to a p-value threshold of 5.06 × 10⁻⁵ (this conservative threshold accounts for all multiple arising from the use of the array, rather than multiple testing arising from assessing only transcripts in the genome-wide significant regions). To test whether mRNA levels of candidate genes identified in the GWAS meta-analysis are associated with circulating adiponectin levels, we applied a Bonferroni corrected threshold of 0.0005 (where 0.0005 = 0.05/96) to define the threshold of association for any individual SNP association with T2D and related traits.

While any individual SNP may demonstrate a relationship with T2D or related traits, it can be more informative to test whether a multi-SNP genotypic risk score is associated with the outcome of interest. In the absence of pleiotropic effects arising from loci other than ADIPOQ, such a multi-SNP genotypic risk score would enable testing of whether adiponectin levels are causally related to risk of T2D or metabolic traits through a Mendelian randomization framework. Since most of the SNPs that we identified to be genome-wide significant for adiponectin levels were not in the ADIPOQ locus, the presence of such pleiotropy precluded a formal Mendelian randomization study. To create a multi-SNP genotypic risk score we implemented a novel method that approximates the average effect of adiponectin decreasing alleles on T2D or related traits. Further, this method allows the use of consortium-level meta-analytic results for a set of SNPs, rather than requiring the re-analysis of individual-level data in each cohort, thereby providing more accurate effects of each allele (due to the larger sample size in the consortium-level meta-analysis). The weighted sum of the individual SNP coefficients leads not only to an estimate of the average combined allelic effect, but also to an approximate estimate of the explained variance (when scaled by the inverse of the total meta-analysis sample size) from a multivariate regression model containing these SNPs.

Association of Genome-Wide Significant SNPs with T2D and Metabolic Traits (Stage 3)

The DIAGRAM+ (effective n = 22,044) [19], MAGIC (n = up to 46,186) [20], GLGC (n = up to 97,021) [22], GIANT (n = up to 121,335) [21], and Body Fat GWAS (n = up to 36,625) consortia provided summary statistics for the association of each SNP that was genome-wide significant in the discovery phase. Since 196 SNPs (which were estimated to be equivalent to 96 independent statistical tests due to linkage disequilibrium [LD]) [26] were tested for their association, we employed a Bonferroni-corrected threshold of α = 0.0005 (where 0.0005 = 0.05/96) to define the threshold of association for any individual SNP association with T2D and related traits.

While any individual SNP may demonstrate a relationship with T2D or related traits, it can be more informative to test whether a multi-SNP genotypic risk score is associated with the outcome of interest. In the absence of pleiotropic effects arising from loci other than ADIPOQ, such a multi-SNP genotypic risk score would enable testing of whether adiponectin levels are causally related to risk of T2D or metabolic traits through a Mendelian randomization framework. Since most of the SNPs that we identified to be genome-wide significant for adiponectin levels were not in the ADIPOQ locus, the presence of such pleiotropy precluded a formal Mendelian randomization study. To create a multi-SNP genotypic risk score we implemented a novel method that approximates the average effect of adiponectin decreasing alleles on T2D or related traits. Further, this method allows the use of consortium-level meta-analytic results for a set of SNPs, rather than requiring the re-analysis of individual-level data in each cohort, thereby providing more accurate effects of each allele (due to the larger sample size in the consortium-level meta-analysis). The weighted sum of the individual SNP coefficients leads not only to an estimate of the average combined allelic effect, but also to an approximate estimate of the explained variance (when scaled by the inverse of the total meta-analysis sample size) from a multivariate regression model containing these SNPs.

European Ancestry

Discovery Phase (n = 29,347)
- 8 novel loci achieved P-Value ≤ 5x10⁻⁸
- Confirmed 2 previously identified loci

In-Silico Follow-up Phase (n = 6,623)
- Meta-analysis of 468 SNPs with P < 5x10⁻⁸ with the Discovery Phase
- 2 additional loci achieved P-Value ≤ 5x10⁻⁵
- Confirmed 6 novel loci from Discovery Phase

De-Novo Follow-Up Phase (n = 3,913)
- Genotyping 10 SNPs with P < 5x10⁻⁸ and Meta-analysis with Previous Phases
- 1 additional locus achieved P-Value ≤ 5x10⁻⁸

135 SNPs Achieved P-Value ≤ 5x10⁻⁸ from 10 Loci in Europeans

Multi-Ethnic Meta-Analysis

- African American = 4,232
- East Asian = 1,776
- European = 29,347

Gene Expression Studies
- 776 Human Adipocytes

Associations with T2D and Metabolic Traits
- T2D (n = 22,570)
- Metabolic Traits (n = 15,234 – 121,335)

Figure 3. Flow chart of study design.

[doi:10.1371/journal.pgen.1002607.g003]
Specifically, suppose \(m \) SNPs have shown association in the discovery phase, and effects are denoted \(\alpha_i \). However, suppose that the goal of interest is to estimate the joint effect of these SNPs on an outcome of interest, \(y \). Let \(j \) index the individuals in the outcome of interest dataset and let

\[
s_j = \sum_{i=1}^{m} w_i x_{ij}
\]

be a risk score based on the discovery data SNPs, and their associated parameter estimates \(w_i \). Therefore, the desired goal is to estimate the parameter in the following equation:

\[
y_j = y_0 + \alpha_j x_j + e_j
\]

The proportion of variance in \(y \) explained by the previous equation, (i.e. the \(R^2 \)) attributable to the risk score can be estimated. Standard linear model model theory shows that the change in log likelihood is proportional to the \(R^2 \),

\[
2[\ln L(M_1) - \ln L(M_0)] \approx nR^2
\]

If the SNPs are uncorrelated, and if the total percentage of variance explained is small, then the change in log likelihood can be approximated by

\[
C = \sum_{i=1}^{m} \left(\beta_i - \hat{\beta}_i \right)^2
\]

where \(\beta_i \) now refers to the effect of SNP \(i \) in the outcome data, \(\hat{\beta}_i \) is the outcome data estimate, and \(s_j \) is the associated standard error estimate. Assuming that this log likelihood difference approximation is maximized with an appropriate value of \(C \), then it can be shown that \(a \) can be estimated by:

\[
\hat{a} \approx \frac{\sum_{i=1}^{m} w_i \beta_i s_i^{-2}}{\sum_{i=1}^{m} w_i^2 s_i^{-2}}
\]

with a standard error estimate of

\[
se(\hat{a}) \approx \sqrt{\frac{1}{\sum_{i=1}^{m} w_i^2 s_i^{-2}}}
\]

Therefore, under the assumption of uncorrelated SNPs, their joint effect can be estimated in external data by a weighted mean of the individual SNP effects, weighted by the estimates from the discovery data. All these quantities can be obtained from meta-analysis or summary data, so that individual-level data are not required to obtain these results.

To implement this method, we first selected LD-independent adiponectin associated alleles by LD pruning the set of genome-wide significant adiponectin SNPs from the discovery phase with an LD threshold of \(r^2 \leq 0.05 \) in the HapMap CEU population, yielding 20 independent LD blocks from the 196 SNPs in Table S2. (We also applied the method using an LD threshold of \(r^2 \leq 0.01 \) and found no relevant change in results). Since many SNPs from the same independent blocks were associated with adiponectin, we selected the SNP from the LD block that explained the most variance in adiponectin levels. Next, we approximated the effect of the multi-SNP genetic risk score using \(\beta \) and its standard error as derived from the consortium-level meta-analysis in DIAGRAM+, MAGIC, GLGC, GIANT and Body Fat GWAS consortium.

Supporting Information

Figure S1 The comparison between two independent meta-analyses performed in different centers for quality control purposes. The \(-\log_{10} p\)-value of all SNPs with MAF\(\geq 0.01 \) in the first analysis are plotted against the \(-\log_{10} p\)-value from the second analysis.

Figure S2 The Manhattan plots of sex-stratified meta-analyses in the discovery phase in the European population. The meta-analysis shown in panel a) is stratified for women and that in panel b) is stratified for men. Manhattan plots demonstrate \(-\log_{10}(p)\)-value measures for association between single nucleotide polymorphisms (SNPs) and chromosomal position. The SNPs that achieved genome-wide significance are highlighted in green in the plots. The red ovals identify loci found only in women.

Figure S3 Association Results Near Peaks for Sex-specific Analysis of Adiponectin. SNPs in regions near peak associations are shown for a) chromosome 8 female, b) chromosome 8 males, c) chromosome 12 females and d) chromosome 12 males. Purple diamonds indicate the top SNPs, which have the strongest evidence of association in women. Each circle shows a SNP with a color scale proportional to the \(r^2 \) value for that SNP and the top SNP from HapMap CEU. Blue lines show the estimated recombination rates from HapMap. The bottom panels illustrate the relative position of each gene in the locus.

Table S1 Cohort characteristics.

Table S2 Comparing the Genome-Wide Significant SNPS from fixed effect model with random effect model. *SNP with \(1^\circ \) less than 0.5 are listed in bold, EA: Effect Allele, NEA: Non-Effect Allele.

Table S3 Association Results of SNPs achieving \(p \leq 5 \times 10^{-6} \) in the Discovery phase in European Populations (Sex-Combined Analysis). *Denotes SNPs typed in the de-novo follow-up phase.

Table S4 Genome-Wide Significant SNPs (\(p<5 \times 10^{-8} \)) Associated with Adiponectin Levels in Non-Europeans Populations. EA: Effect Allele, NEA: Non-Effect Allele, EA-Freq: Frequency of Effect Allele.

Table S5 SNPs associated with adiponectin at genome-wide significant levels (\(p \leq 5 \times 10^{-8} \)) using the fixed-effect model in women only in European populations (including Discovery and Follow-Up phases).

Table S6 SNPs associated with adiponectin at genome-wide significant levels (\(p \leq 5 \times 10^{-8} \)) using fixed-effect models in men only in European populations.

Table S7 Association results of nominally significant SNPs with Type 2 Diabetes in the DIAGRAM+ Consortium. EA: Effect Allele, NEA: Non-Effect Allele. B) Association results of nominally significant SNPs with diabetes-related traits in the MAGIC Consortium. Fasting glucose and 2 h glucose in mmol/L; Insulin in pmol/L, EA: Effect Allele, NEA: Non-Effect Allele. C) Association results of nominally significant SNPs with diabetes-related traits in the GLGC Consortium.
related traits in the GIANT and Body fat GWAS consortia. The beta expressed in inverse normally transformed BMI units (i.e. interpretable as SD or Z-score), shows the change in BMI per additional effect allele. *Results that are statistically significant, accounting for the number of independent SNPs, are highlighted in bold. EA: Effect Allele, NEA: Non-Effect Allele, EAFreq: Frequency of Effect Allele. D) Association results of nominally significant SNPs with lipid traits in the GLGC Consortium. For these traits the effect size is in SD units, based on standard error-weighted meta-analysis. *Results that are statistically significant, accounting for the number of independent SNPs are highlighted in bold. EA: Effect Allele, NEA: Non-Effect Allele, EAFreq: Frequency of Effect Allele. (PDF)

Text S1 Supplemental data include description of study cohorts and funding.

(DOCX)

Acknowledgments

We thank all study participants, volunteers, and study personnel that made this consortium possible. We would also like to thank Ms. Renee Atallah for her efforts with the writing and correction of the manuscript.

Consortia Authors’ list:

DIAGRAM:

Benjamin F Voight1,2,3, Laura J Scott4, Valgerdur Steinthorsdottir5, Andrew P Ash6, Christian Dina5,8, Ryan P Welch6, Eleftheria Zeggini6,7, Cornelia Huth1,2, Yuri S Aukchenko2,8, Gudmar Thorleifsson3, Laura J McCulloch1,2, Teresa Ferreira1,2, Harald Grallert2,3,4, Najaf Amin1,2, Gianming Wu1,2, Cristian J Groves1,2, Kristian Hveem2,3,4, Mark J Daly1,2, Thompson Sparsø1,2, Klaus Strassburger5,6, Heather M Stringham1,2, Paloma3,4, Peter P Pramstaller8,3, Igor Rudan4,8,8, Eric Sijbrands2,3, Amin1,2, Guanming Wu1,2, Cristen J Willer4, Soumya Raychaudhuri1,2,16, Erdos3,3, Caroline S Fox2,4,1, Christopher S Franklin1,2, Martha Ganser4,8, Walker8,3, Nicholas J Wareham1,4, Richard M Watanabe7,8, Goncalo R Bergman7,8, Stephane Cauchi7, Francis S Collins7,8, Anna L Gloyn1,2,3,93, Ulf Dupuis20,21, LuQi2,22, Ayedlet V Segre1,2,1, Mandy van Hoek25, Pau Navarro26, Kristin Ardlie1, Beverley Balkau27,28, Rafn Benediktsson29,30, Chines33, Marilyn Cornelis24, David J Couper37, Gabe Crawford1, Alex SF Doney3,9, Katherine S Elliott6, Amanda L Elliott1,17,40, Michael R Hassanali14, Christian Herder4,5,5, Bo Isomaa46,47, Anne U Jackson4, Paul Abecasis4, Bernhard O Boehm31, Harry Campbell42, Mark J Daly1,2,3, Timothy M Frayling62,63, Leif Groop56,72, Rob Sladek25,67, Unnar Thorsteinsson1,3,4, James F Wilson1,2, Thomas Illig1,2, Philipp Froogel3,95, Cornelia M van Duij3,11, Kari Stefansson5,94, David Altshule12,33,40,35, Michael Boehlke4, Mark J McCarthy6,13,14,6.

1. Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02142, USA
2. Center for Human Genetic Research, Massachusetts General Hospital, 183 Cambridge Street, Boston, Massachusetts 02114, USA
3. Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
4. Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109-2099, USA
5. deCODE Genetics, 101 Reykjavik, Iceland
6. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
7. CNRS-UMR-8090, Institute of Biology and Lille 2 University, Pasteur Institute, F-59019 Lille, France
8. INSERM UMR 1353 CNRS ERL1347 F-44007 Nantes, France
9. Bioinformatics Program, University of Michigan, Ann Arbor MI USA 48109
10. Wellcome Trust Sanger Institute, Hinxton, CB10 1HH, UK
11. Institute of Epidemiology, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
12. Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University, 81377 Munich, Germany
13. Department of Epidemiology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
15. Ontario Institute for Cancer Research, 101 College Street, Suite 800, Toronto, Ontario M5G 0A3, Canada
16. Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
17. Department of Molecular Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
18. MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
19. Department of Biostatistics, Biostatistics, Boston, Massachusetts 02111, USA
20. Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118, USA
21. National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts 01702, USA
22. Department of Nutrition, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
23. Department of Epidemiology, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
24. Channing Laboratory, Dept. of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Ave, Boston, MA 02115, USA
25. Department of Internal Medicine, Erasmus University Medical Center, PO-Box 2040, 3000 CA Rotterdam, The Netherlands
26. MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, EH4 2XU, UK
27. INSERM U780, F-94407 Villejuif, France
28. University Paris-Sud, F-91405 Orsay, France
29. Landspitali University Hospital, 101 Reykjavik, Iceland
30. Icelandic Heart Association, 201 Kopavogur, Iceland
31. Division of Endocrinology, Diabetes and Metabolism, Ulm University, 89081 Ulm, Germany
32. The Human Genetics Center and Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas 77030, USA
33. National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland 20892, USA
34. R&D Centre, Skaraborg Primary Care, 541 30 Skövde, Sweden
35. Department of Internal Medicine, Catharina Hospital, PO-Box 1350, 5602 ZA Eindhoven, The Netherlands
36. Endocrinology-Diabetology Unit, Corbíl-Essonés Hospital, F-91100 Corbíl-Essonés, France
37. Department of Biostatistics and Collaborative Studies Coordinating Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
38. Diabetes Research Centre, Biomedical Research Institute, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
39. Pharmacogenomics Centre, Biomedical Research Institute, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
40. Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
41. Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
42. Centre for Population Health Sciences, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK
43. Hagedorn Research Institute, DK-2920 Gentofte, Denmark
44. Centre Hospitalier Universitaire de Poitiers, Endocrinologie Diabetologie, CIC INSERM U801, INSERM U927, Université de Poitiers, UFR, Médecine Pharmacie, 86021 Poitiers Cedex, France
45. Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
46. Folkhalsakliniken Research Center, FIN-00014 Helsinki, Finland
47. Malmöska Municipal Health Center and Hospital, 68601 Jakobstad, Finland
48. Diabetes Research and Wellness Foundation Human Islet Isolation Facility and Oxford Islet Transplant Programme, University of Oxford, Old Road, Headington, Oxford, OX3 7JL, UK
49. Research Centre for Prevention and Health, Gluorup University Hospital, DK-2600 Glostrup, Denmark
50. Faculty of Health Science, University of Copenhagen, 2200 Copenhagen, Denmark
51. Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland 21287, USA
52. Department of Medicine, and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland 21287, USA
53. Department of Medicine, University of Kuopio and Kuopio University Hospital, FIN-70211 Kuopio, Finland
54. Department of General Medical Practice, University of Aarhus, DK-8000 Aarhus, Denmark
55. Department of Internal Medicine, Maxima MC, PO-Box 90052, 5600 PD Eindhoven, The Netherlands
56. Department of Clinical Sciences, Diabetes and Endocrinology Research Unit, University Hospital Malmo, Lund University, 205 02 Malmo, Sweden
57. Department of Endocrinology, Diabetology and Nutrition, Bichat-Claude Bernard University Hospital, Assistance Publique des Hôpitaux de Paris, 75870 Paris Cedex 18, France
58. INSERM U695, Université Paris 7, 75018 Paris, France
59. Institute of Human Genetics, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
60. Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität Muenchen, 81675 Muenchen, Germany
61. Nord-Trøndelag Health Study (HUNT) Research Center, Department of Community Medicine and General Practice, Norwegian University of Science and Technology, NO-7468 Trondheim, Norway
62. Genetics of Complex Traits, Institute of Biomedical and Clinical Science, Peninsula Medical School, University of Exeter, Magdalen Road, Exeter EX1 2LU, UK
63. Diabetes Genetics, Institute of Biomedical and Clinical Science, Peninsula Medical School, University of Exeter, Barrack Road, Exeter EX2 5DW, UK
64. Institute of Biometries and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, 40225 Düsseldorf, Germany
65. Department of Human Genetics, McGill University, Montreal H3H 1P3, Canada
66. Department of Medicine, Faculty of Medicine, McGill University, Montreal, H3A 1A7, Canada
67. McGill University and Genome Quebec Innovation Centre, Montreal, H3A 1A7, Canada
68. Department of Metabolic Diseases, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
69. Department of Endocrinology and Diabetes, Norfolk and Norwich University NHS Trust, Norwich, NR1 7UY, UK
70. General Medicine Division, Massachusetts General Hospital, Boston, Massachusetts, USA
71. Institut interrégional pour la Santé (IRSA), F-37521 La Riche, France
72. Department of Medicine, Helsinki University Hospital, University of Helsinki, FIN-00290 Helsinki, Finland
73. Department of Internal Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
74. Molecular Genetics, Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, 9700 RB Groningen, The Netherlands
75. Department of Genetics, University Medical Center Groningen and University of Groningen, 9713 EZ Groningen, The Netherlands
76. Department of Physiology and Biophysics, University of Southern California School of Medicine, Los Angeles, California 90033, USA
77. National Institute of Health, Bethesda, Maryland 20892, USA
78. Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, S-751 85 Uppsala, Sweden
79. University of Southern Denmark, DK-5230 Odense, Denmark
80. Centre for Diabetes, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
81. Department of Medicine, The Hospital of Levering, N-7600 Levering, Norway
82. Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
83. Institute of Genetic Medicine, European Academy Bozen/Bolzano (EURAC), Viale Druso 1, 39100 Bolzano, Italy
84. Croatian Centre for Global Health, Faculty of Medicine, University of Split, Solta ska 2, 21000 Split, Croatia
85. Institute for Clinical Medical Research, University Hospital “Sestre Milosrdnice”, Vinogradnka 29, 10000 Zagreb, Croatia
86. Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki FIN-00020, Finland.
87. Diabetes Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
88. Department of Preventive Medicine, Keck Medical School, University of Southern California, Los Angeles, CA, 90009-9011, USA
89. Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota 55454, USA
90. Department of Biomedical Science, Parnum, Faculty of Health Science, University of Copenhagen, 2200 Copenhagen, Denmark
91. Faculty of Health Science, University of Aarhus, DK-8000 Aarhus, Denmark
92. Klinikum Grosshadern, 81377 Munich, Germany
93. Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
94. Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
95. Genomic Medicine, Imperial College London, Hammersmith Hospital, W12 0NN, London, UK
96. Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Old Road Headington, Oxford, OX3 7LJ, UK

MAGIC Consortium: Josée Dupuis 1,2, 7, Claudia Langenberg 1,2, 7, Inga Przeworska 6, 178, Kicha Saxena 6, 178, Nicole Soranzo 1,2, 7, Anne U Jackson 2, 178, Eleanor Wheeler 1, 7, Nicole LGazed 1, 2, Nabila Bonaiti-Najj 1, Anna LGloun 1, Cecilia MLindgren 1, 5, Reedik Maag 1, 5, Andrew P Morris 1, 7, Joshua Randall 1, Toby Johnson 1, 5, 14, 16, Paul Ellis 17, 178, Denis Rybin 18, Gudmar Thorgeirsson 10, Valdur Kõiv 10, Peter Husemann 19, Harald Graßler 17, Abbas Delhaghen 17, Josie Janottenga 17, Christopher SFranklin 17, Pau Navarro 17, Kijoung Song 17, Anuj Goel 17, John R Perry 17, Josephine M€€gan 17, Taina Lajunen 17, Niels Grarup 17, Thomas Sarsø 17, Akira Ohtuka 17, Heather F Voight 17, Benjamin F Voight 17, Heather M Stringham 17, Man Li 17, Stavroula Kanoni 17, Peter Shrader 17, Christian Cavalcante-Proeha 17, Meena Kumar 17, Lu Q 17, Nicholas J Timpson 17, Christian Gieger 17, Carina Zehbem 17, Ghislain Rocheleau 17, Erik Ingelsson 17, Peng An 17, Jeffrey O’Connell 17, Jian’an Luan 17, Amanda Elliott 17, Steven A McCarr 17, Felicity Payne 17, Rosa Maria Roccafa 17, François Pattou 17, Praven Sethupathy 17, Kristin Ardö 17, Yavuz Ariyurek 17, Beverley Balkau 17, Philip Barker 17, John P Beilby 17, Yoav Ben-Shlomo 17, Ralf Benedictsson 17, Amanda J Bennett 17, Sven Bergmann 17, Marielle Bochud 17, Eric Boerwinkle 17, Amélie Bonnefond 17, Lori LBonnycastle 17, Knut Borch-Johnsen 17, Yvonne Boettcher 17, Eric Brunner 17, Suzannah J Bumpstead 17, Guillaume Charpentier 17, Yi-i DerIdd 17, Peter Chines 17, Robert Clarke 17, Lachlan J MCoin 17, Matthew N Cooper 17, Marilyn Cornelis 17, Gabe Crawford 17, Laura Grisponi 17, Ian NMDay 17,
Adiponectin: Multiethnic Genome-Wide Meta-Analysis

2 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
3 Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA.
4 Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA.
5 Wellcome Trust-Sanger Institute, Hinxton, Cambridge, UK.
6 Twin Research and Genetic Epidemiology, King’s College London, St Thomas’ Hospital Campus London, UK.
7 Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA.
8 Metabolic Disease Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.
9 Cardiovascular Health Research Unit and Department of Medicine, University of Washington, Seattle, Washington, USA.
10 Centre National de la Recherche Scientifique–Unité Mixte de Recherche 8090, Pasteur Institute, Lille 2 – Droit et Santé Université, Lille, France.
11 Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.
12 Swiss Institute of Social and Preventative Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland.
13 Department of Epidemiology, Erasmus Medical College, Rotterdam, The Netherlands.
14 Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands.
15 Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK.
16 MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh, UK.
17 Division of Genetics, Research and Development, GlaxoSmithKline, King of Prussia, Pennsylvania, USA.
18 Department of Cardiovascular Medicine, University of Oxford, Oxford, UK.
19 Genetics of Complex Traits, Institute of Biomedical and Clinical Sciences, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, UK.
20 National Institute of Aging, Baltimore, Maryland, USA.
21 Unit for Child and Adolescent Health and Welfare, National Institute for Health and Welfare, Biocenter Oulu, University of Oulu, Oulu, Finland.
22 Hagedorn Research Institute, Gentofte, Denmark.
23 Department of Medicine and Therapeutics, Level 7, Ninewells Hospital and Medical School, Dundee, UK.
24 Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
25 Department of Nutrition-Dietetics, Harokopio University, Athens, Greece.
26 General Medicine Division, Massachusetts General Hospital, Boston, Massachusetts, USA.
28 Department of Nutrition and Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA.
29 MRC Centre for Causal Analyses in Translational Epidemiology, University of Bristol, Bristol, UK.
30 Fundación para la Investigación Biomédica del Hospital Clínico San Carlos, Madrid, Spain.
31 Departments of Medicine and Human Genetics, McGill University, Montreal, Canada.
Adiponectin: Multiethnic Genome-Wide Meta-Analysis
Adiponectin: Multiethnic Genome-Wide Meta-Analysis

15 Roberts Research Institute, University of Western Ontario, London, Ontario N6A 3K8, Canada.
16 Department of Vascular Medicine, Academic Medical Centre at the University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
17 Department of Epidemiology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
18 Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118, USA.
19 National Heart, Lung and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts 01702, USA.
20 Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
21 Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK.
22 Cardiovascular Health Research Unit and Department of Medicine, National Heart, Lung and Blood Institute, Washington, Seattle, WA 98101, USA.
23 deCODE Genetics, 101 Reykjavik, Iceland.
24 Division of Statistical Genomics in the Center for Genome Sciences and Optimization, National Institute of Health, Seoul 122-774, Republic of Korea.
25 Department of Epidemiology, College of Nursing, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea.
26 Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK.
27 Department of Genetics, University of Adelaide, Adelaide 5005, Australia.
28 Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA.
29 Center for Genome Science, National Institute of Health, Seoul 122-701, Republic of Korea.
30 Interdisciplinary Program in Bioinformatics, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
31 Department of Statistics, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
32 Department of Biostatistics, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea.
33 Centre for Molecular Epidemiology, National University of Singapore, Singapore, 117597, Republic of Singapore.
34 Genome Institute of Singapore, Singapore 138672, Republic of Singapore.
35 Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
36 Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.
37 Genetics Division, GlaxoSmithKline R&D, King of Prussia, Pennsylvania 19406, USA.
38 MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK.
39 Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Schloßstralße 41, A-6020 Innsbruck, Austria.
40 Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, 23562 Lübeck, Germany.
41 MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK.
42 Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA) and Center of Medical Systems Biology (CSMB), 2300 RC Leiden, The Netherlands.
43 Centre for Population Health Sciences, University of Edinburgh, Edinburgh EH9 9AG, UK.
44 Department of Biological Psychology, VU University Amsterdam, Van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands.
45 Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, 85764 Neuherberg, Germany.
46 Genetic Epidemiology Unit, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Queensland 4029, Australia.
47 Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland.
48 Department of Internal Medicine, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
Adiponectin: Multiethnic Genome-Wide Meta-Analysis

49 Istituto di Neurogenetica and Neurofarmacologia (INN), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari 09042, Italy.
50 Department of Chronic Disease Prevention, National Institute for Health and Welfare, FI-00271 Helsinki, Finland.
51 Department of Health Sciences, University of Leicester, Leicester LE1 6TF, UK.
52 Clinical Research Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21225, USA.
53 Medstar Research Institute, Baltimore, Maryland 21218, USA.
54 Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK.
55 Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
56 Department of Psychiatry, EMGO Institute, Neuroscience Campus Amsterdam, VU University Medical Center, 1081 MB Amsterdam, The Netherlands.
57 Division of Cardiology, Department of Medicine, Helsinki University Central Hospital (HUCH), FI-00290 Helsinki, Finland.
58 Unità Operativa Geriatria, Istituto Nazionale Ricovero e cura Anziani (INRCA), Istituto Ricovero e cura a Carattere Scientifico (IRCCS), Via Cassia 1167, 00185 Rome, Italy.
59 Hamreumsshon Hospital, National Health and Lung Institute, Imperial College London, London W12 0NN, UK.
60 Gerontology Research Center, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA.
61 Department of Health Research and Policy, Stanford University, Stanford, California 94305, USA.
62 Department of Clinical Chemistry, University of Oulu, FI-90022 Oulu, Finland.
63 The John & Jennifer Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa, Ottawa K1Y 4W7, Canada.
64 Departments of Medicine, Epidemiology, and Health Services, University of Washington, Group Health Research Institute, Group Health Cooperative, Seattle, Washington 98101, USA.
65 Institute of Genetic Medicine, European Academy Bozen/Bolzano (EURAC), Viale Druso 1, 39100 Bolzano, Italy—affiliated institute of the University of Innsbruck, Innsbruck, Austria.
66 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-17177 Stockholm, Sweden.
67 Amgcn, Thousand Oaks, California 91320, USA.
68 Genetic and Molecular Epidemiology Laboratory, McMaster University, Hamilton, Ontario L8N3Z5, Canada.
69 Department of Clinical Genetics, Erasmus University Medical Center, 3066 CA Rotterdam, The Netherlands.
70 Institut fü r Humangenetik, Helmholtz Zentrum München, Deutsches Forschungszentrum für Umwelt und Gesundheit, 85764 Neuherberg, Germany.
71 Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany.
72 Welcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
73 Oxford Centre for Diabetes, Endocrinology and Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7JL, UK.
74 Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford OX3 7JL, UK.
75 Avon Longitudinal Study of Parents and Children, University of Bristol, Bristol BS8 2BN, UK.
76 Institute of Applied Genomics, via Linnusso 51, 33100 Udine, Italy.
77 Camino CA Rotatori, Genova, Italy.
78 Transplantation Laboratory, Haarman Institute, University of Helsinki, FI-00014 Helsinki, Finland.
79 Montreal Heart Institute (Research Center), Université de Montréal, Montréal, Quebec H3T 1C8, Canada.
80 Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA.
81 Science Center, Tampere University Hospital, FI-33521 Tampere, Finland.
82 Institute of Regional Health Research and the Danish Twin Registry, Institute of Public Health, University of Southern Denmark, J wounded Vej 9B, DK-5000, Odense, Denmark.
83 Faculty of Medicine, Department of Public Health, University of Helsinki, FI-00014 Helsinki, Finland.
84 Massachusetts General Hospital Weight Center, Boston, Massachusetts 02114, USA.
85 Department of Genetics and Pathology, Rudbeck Laboratory, University of Uppsala, SE-75185 Uppsala, Sweden.
86 Department of Epidemiology & Biostatistics, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK.
87 Department of Public Health Science and General Practice, University of Oulu, FI-90220 Oulu, Finland.
88 Klinik und Poliklinik für Innere Medizin II, Universität Regensburg, 93053 Regensburg, Germany.
89 Department of Epidemiology and Preventive Medicine Regensburg University Medical Center Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
90 Department of Biomedical Engineering and Computational Science, Aalto University School of Science and Technology, FI-00076 Aalto, Finland.
91 LIGHT Research Institute, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK.
92 Department of Medicine, Helsinki University Hospital, FI-00290 Helsinki, Finland.
93 Department of Psychiatry, Center for Neurobehavioral Genetics, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.
94 Clinical Research Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21225, USA.
95 Medizinische Klinik II, Universität zu Lübeck, 23538 Lübeck, Germany.
96 MRC-HPA Centre for Environment and Health, Imperial College London, London W2 1PG, UK.
97 BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK.
98 Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, SE-17177 Stockholm, Sweden.
99 National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA.
100 Departments of Vascular Medicine & Cardiology, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands.
101 Department of Physiology and Biophysics, University of Southern California, Los Angeles, California 90033, USA.
102 Geriatrie Unit, Azienda Sanitaria Firenze (ASF), 50125 Florence, Italy.
103 Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
104 Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
105 Singapore Eye Research Institute, National University of Singapore, Singapore 169751, Republic of Singapore.
106 Departments of Medicine/Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore.
107 Office of Population Studies Foundation, University of San Carlos, Cebu City 6000, Philippines.
108 Department of Anthropology, Northwestern University, Evanston, Illinois 60208, USA.
109 Department of Nutrition, Carolina Population Center, University of North Carolina, Chapel Hill, North Carolina 27516, USA.
110 Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.
111 Children's Hospital Oakland Research Institute, Oakland, California 94609, USA.
112 Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain.
113 Nutrition and Genomics Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, USA.
114 Clinical Pharmacology and Barts and The London Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
Author Contributions

References