Name: ________________________________

Show all work on the quiz in the space provided. Correct answers without work will not receive credit. There are to be no calculators used for this quiz.

Potentially useful formulas:

\[
\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta
\]
\[
\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta
\]
\[
\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}
\]

\[
\sin^2 \theta = \pm \sqrt{1 - \cos^2 \theta}
\]
\[
\cos^2 \theta = \pm \sqrt{1 + \cos^2 \theta}
\]
\[
\tan^2 \theta = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} = \frac{1 - \cos \theta}{\sin \theta} = \frac{\sin \theta}{1 + \cos \theta}
\]

(5 points) 1. Let \(\alpha\) be a third quadrant angle with \(\sin \alpha = -\frac{2}{3}\) and let \(\beta\) be an angle in the second quadrant with \(\cos \beta = -\frac{12}{13}\). Find the exact value, without using a calculator, of \(\sin(\alpha + \beta)\).
(5 points) 2. Without using a calculator, find the exact values of

(a) \(\sin^{-1}(\cos(\frac{5\pi}{6})) \)

(b) \(\cot(\sin^{-1}(\frac{2}{3})) \)