On the Closedness of the Linear Image of a Closed Convex Cone

Gábor Pataki

Dept. of Statistics and Operations Research
UNC, Chapel Hill
The Problem

We are given a closed, convex cone, and a linear mapping. Under what conditions is the image of the cone closed?

- A very simple question in convex analysis → interesting on its own right.
- Fundamental in studying duality theory.
The setup

Let

- K be a closed, convex cone, $(x \in K, \lambda \geq 0 \Rightarrow \lambda x \in K)$.
- $K^* = \{y \mid \langle y, s \rangle \geq 0 \ \forall s \in K\}$ the dual of K.
- M a linear map, M^* its adjoint (transpose).
The question

- Under what conditions is M^*K^* is closed?

Classical results

- If K is polyhedral,
- Or $\mathcal{R}(M) \cap \text{ri } K \neq \emptyset$ ("Slater-condition"),
- Then M^*K^* is closed.
More recent results

- Waksman and Epelman (76): a simple condition, that reduces to the classical ones in most important cases.
- Auslender (96): a more complicated, necessary and sufficient condition for arbitrary closed convex sets.
- Bauschke and Borwein (99): a necessary and sufficient condition for the continuous image of a closed convex cone, in terms of the CHIP property.
- Ramana (98): An extended dual for semidefinite programs, without any CQ: related to work of Borwein and Wolkowicz in 84 on facial reduction.
Outline of main results

We provide simple, equivalent conditions that are

- necessary for all cones,
- necessary and sufficient for a large class of cones, that we call nice cones. (Technical condition, more about it later).
- Fact: Most cones occurring in optimization (polyhedral, semidefinite, quadratic, lp-norm cones etc.) are nice.
Some important basics

- C convex set. $\text{dir} \ (x, C) := \{ y \mid x + \alpha y \in C \text{ for some } \alpha > 0 \}$: the feasible directions at x in C.
- Fact: $\text{dir} \ (x, C')$ is a convex cone, but it may not be closed!
Figure 1: Feasible directions
Main Result, Part 1

Let K be a closed cone, M a linear map, $x \in \text{ri} (\mathcal{R}(M) \cap K)$ (nonneg. orthant: max # of nonzeros; semidef. cone: max. rank).

Then

$$M^* K^* \text{ is closed } \Rightarrow \mathcal{R}(M) \cap \text{cl dir} \ (x, K) = \mathcal{R}(M) \cap \text{dir} \ (x, K) \ (\text{Condition 1})$$

If K is nice, then \Leftrightarrow is true.

Obviously,

K is polyhedral or $x \in \text{ri } K \Rightarrow \text{dir} \ (x, K)$ is closed \Rightarrow Condition 1.
Example 1 $K = K^* = S^2_+ = 2 \times 2$ psd matrices.

\[M \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = z_1 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + z_2 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]

\[x = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in \text{ri} (\mathcal{R}(M) \cap K) \]

\[y = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \in \mathcal{R}(M) \cap (\text{cl dir} (x, K) \setminus \text{dir} (x, K)) \]

The x and y are certificates of the nonclosedness of M^*K^*.
Indeed, we can check the nonclosedness of M^*K^* directly:

- $M^* \begin{bmatrix} a & c \\ c & b \end{bmatrix} = \begin{bmatrix} a \\ 2c \end{bmatrix}$.

- Then $\begin{bmatrix} 0 \\ 2 \end{bmatrix} \in \text{cl} \left(M^*S_+^2 \right)$, since $M^* \begin{bmatrix} \epsilon & 1 \\ 1 & 1/\epsilon \end{bmatrix} = \begin{bmatrix} \epsilon \\ 2 \end{bmatrix}$.

- But $\begin{bmatrix} 0 \\ 2 \end{bmatrix} \not\in M^*S_+^2$, since $\begin{bmatrix} 0 & 1 \\ 1 & b \end{bmatrix} \not\in S_+^2$ for any b.
Next: some equivalent variants of Condition 1. Let

\[x \in \text{ri} (\mathcal{R}(M) \cap K) \]

\[F = \text{the minimal face of } K \text{ that contains } x \]

\[F^\perp = \{ y \mid y^T x = 0 \ \forall x \in F \} \quad \text{(a subspace)} \]

\[F^\Delta = K^* \cap F^\perp \quad \text{(a face of } K^*) \]

\[F^\Delta \text{ is called the complementary (conjugate) face of } F. \]
Example If $K = K^* = S^n_+$, a typical F, F^\perp, and F^\triangle look like

\[
F = \left\{ \begin{bmatrix} U & 0 \\ 0 & 0 \end{bmatrix} \mid U \succeq 0 \right\}
\]

\[
F^\perp = \left\{ \begin{bmatrix} 0 & V \\ V^T & W \end{bmatrix} \mid V, W \text{ free} \right\}
\]

\[
F^\triangle = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & W \end{bmatrix} \mid W \succeq 0 \right\}
\]
Main Result, Part 2

Let K, M and F be as before. Then

- $M^* K^*$ is closed $\Rightarrow M^* F^\Delta = M^* F^\perp$ (Condition 2)

If K is nice, then \Leftrightarrow is true.
Condition 2 rephrased for $K =$ the nonnegative orthant. Suppose that in

\[M_0 y \geq 0 \]
\[M_+ y \geq 0 \]

the first group of inequalities always hold at equality, and it is maximal w.r.t. this property (i.e. $\exists \bar{y} : M_0 \bar{y} = 0, M_+ \bar{y} > 0$).

Then Condition 2 \iff

\[\{ y^T M_0 \mid y \geq 0 \} = \{ y^T M_0 \mid y \text{ free} \} \]
Main Result, Part 3

\[F^\triangle := K \cap F^\perp: \text{ the complementary face of } F. \text{ Then} \]

\[M^*K^* \text{ is closed } \Rightarrow \]

(1) \(\exists u \in \text{ri} \ F^\triangle \cap \mathcal{N}(M^*), \text{ and} \)

(2) \(M^*(\tan(u, K^*)) = M^*(\text{lin } F^\triangle). \)

If \(K \) is nice, then \(\Leftrightarrow \) is true.

(1) \(\Leftrightarrow x \text{ and } u \text{ are a strictly complementary pair, that is,} \)
\(x \in \mathcal{R}(M) \cap \text{ri}F \text{ and } u \in \mathcal{N}(M^*) \cap \text{ri}F^\triangle. \)
• (1) for K polyhedral: true by Goldman-Tucker.

• (2) for K polyhedral: the tangent space and the linear span are the same.
Example 3

\[
M z = z_1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + z_2 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
\]

Certificates of closedness:

- \((SC)\) points in \(\mathcal{R}(M) \cap K\) and \(\mathcal{N}(M^*) \cap K^*\):

\[
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

- \(\text{lin } F^\Delta\) and \(\tan (u, K^*)\):

\[
\begin{bmatrix} 0 & 0 & 0 \\ 0 & \times & \times \\ 0 & \times & \times \end{bmatrix} \quad \begin{bmatrix} 0 & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix}
\]

Hence \(M^* K^*\) is closed.
To verify that M^*K^* is closed, we need to check:

- The pair (x, u) is strictly complementary, and

- Two subspaces are equal. This is easy, as opposed to checking the equality of two arbitrary sets.

Hence, if $K = K^* = S^n_+$, we can verify the closedness of M^*K^* in polynomial time, in the real number model of computing.
The examples so far were easy . . . But:

Example 4 Using Condition 3, it is easy to verify the closedness of $M^* S_4^+$, where

$$M^* : S_4^+ \ni Y \rightarrow \begin{bmatrix} y_{11} \\ 2y_{12} - y_{22} + y_{33} + 2y_{24} \\ 2y_{13} + y_{22} - y_{33} \\ 2y_{14} + 2y_{23} \end{bmatrix}$$

The verification seems quite hard **without** Condition 3.
So, what are nice cones?

Definition K is *nice*, if for all faces F of K, $F^* = K^* + F^\perp$.

For $K = K^* = \text{nonnegative orthant}$:

\[
F = \left\{ \begin{bmatrix} x \\ 0 \end{bmatrix} \mid x \geq 0 \right\}
\]

\[
F^* = \left\{ \begin{bmatrix} z \\ y \end{bmatrix} \mid z \geq 0, \ y \text{ free} \right\}
\]

\[
F^\perp = \left\{ \begin{bmatrix} 0 \\ y \end{bmatrix} \mid y \text{ free} \right\}
\]

They first appear in a paper by Borwein and Wolkowicz in 1980. Niceness seems like a reasonable “relaxation” of polyhedrality.
Theorem

1. \(K \) is nice \(\Rightarrow \) \(K \) is facially exposed.

2. \(K \) is facially exposed, and for all faces \(F \) of \(K \), \(F^* \) is facially exposed \(\Rightarrow \) \(K \) is nice.

Figure 2: A facially not exposed convex set
Conclusion, and further work

- Very simple, necessary condition for the closedness of the image of a closed convex cone;
- Exact for most relevant cones occurring in optimization.
- Certificates for
 - Nonclosedness of the image.
 - Closedness of the image.
- Ongoing work:
 - What are nice cones?
 - What about cones, which are not nice?
 - Applications …