Solution to $u_t = -Lu, \quad L = -\frac{d^2}{dx^2}$.
Figure 1B

Solution to $u_t = -Lu$, $L = \left(-\frac{d^2}{dx^2}\right)^{1/2}$.
Solution to $u_t = -Lu$, $L = \left(-\frac{d^2}{dx^2}\right)^{1/4}$.
Solution to $u_t = -Lu$, $L = \psi_a^{\lambda}(D)$, $a = \frac{3}{2}$.

Figure 1D
Solution to $u_t = -Lu, \quad L = \varphi_a^\#(D), \quad a = \frac{1}{2}$.

Figure 1E
Solution to \(u_t = -Lu + 6u(1-u) \), \(L = -\frac{d^2}{dx^2} \).
Solution to $u_t = -Lu + 6u(1-u)$, $L = \left(\frac{d^2}{dx^2}\right)^{1/2}$.

Figure 2B
Solution to \[u_t = -Lu + 6u(1 - u), \quad L = \left(-\frac{d^2}{dx^2}\right)^{1/4}. \]
Solution to \(u_t = -Lu + 6u(1 - u) \), \(L = \psi^b_a(D) \), \(a = \frac{3}{2} \).
Solution to $u_t = -Lu + 6u(1-u)$, $L = \varphi^\#_a(D)$, $a = \frac{1}{2}$.

Figure 2E