Homework # 11

1. Let \(T, R^T, R_0^T \) be as in class. Show that
 (a) \(R_0^T \) is a Field.
 (b) \(\sigma(R_0^T) = R^T \)

 \textbf{Hint.} Try to write the cylinder sets in terms of the canonical coordinate process.

2. Construct a probability space on which is defined an i.i.d. sequence of \(N(0, 1) \) random variables.

3. Let \(\nu \) be a probability measure on \((\mathbb{R}, \mathcal{B}(\mathbb{R})) \). Also let \(p: \mathbb{R} \times \mathcal{B}(\mathbb{R}) \rightarrow [0, 1] \) be a function such that for every \(x \in \mathbb{R} \), \(p(x, \cdot) \) is a probability measure on \((\mathbb{R}, \mathcal{B}(\mathbb{R})) \) and for every \(B \in \mathcal{B}(\mathbb{R}) \), \(p(\cdot, B) \) is a measurable function from \((\mathbb{R}, \mathcal{B}(\mathbb{R})) \) to \((\mathbb{R}, \mathcal{B}(\mathbb{R})) \). Show that there is a sequence of random variables \(\{X_n\} \) defined on some probability space \((\Omega, \mathcal{F}, P)\) such that for all \(k \geq 1 \) and \(A_i \in \mathcal{B}(\mathbb{R}) \), \(i = 1, \ldots, k \)

\[
P(X_1 \in A_1, \cdots X_k \in A_k) = \int_{A_1} \left(\int_{A_2} \left(\cdots \left(\int_{A_{k-1}} p(x_k, A_k)p(x_{k-1}, dx_k) \right) \cdots \right) p(x_1, dx_2) \right) \nu(dx_1).
\]

Such a sequence of random variables is called a Markov chain with initial distribution \(\nu \) and transition probability function \(p(x, dy) \).

 \textbf{Hint.} Recall the remark made in class regarding the simplified form of Kolmogorov Consistency Theorem for ordered sets.

4. Let \(\nu \) and \(p \) be as in 3. Suppose that \(\nu \) satisfies the condition

\[
\int p(x, A) \nu(dx) = \nu(A), \quad \forall A \in \mathcal{B}(\mathbb{R}).
\]

(We say that \(\nu \) is an invariant measure for the Markov chain.) Show that there exists a sequence \(\{Z_n\}_{n \in \mathbb{Z}} \), where \(\mathbb{Z} = \{-1, 0, 1, \cdots\} \), defined on some probability space satisfying:

 (a) \(P(Z_n \in A) = \nu(A) \) for all \(A \in \mathcal{B}(\mathbb{R}) \).
 (b) \[
P(Z_n \in A_1, \cdots Z_{n+k} \in A_k) = \int_{A_1} \left(\int_{A_2} \left(\cdots \left(\int_{A_{k-1}} p(x_k, A_k)p(x_{k-1}, dx_k) \right) \cdots \right) p(x_1, dx_2) \right) \nu(dx_1),
\]

for all \(n \in \mathbb{Z} \) and \(A_i \in \mathcal{B}(\mathbb{R}) \), \(i = 1, 2, \cdots k \).

 \textbf{Hint.} Same as problem 3.
5. Let $T = [0, \infty)$. Show that there exists a stochastic process $\{W_t\}_{t \in T}$ on some probability space satisfying:

(a) $W_t - W_s \sim N(0, (t - s))$ for all $0 \leq s < t < \infty$.

(b) $W(0) \equiv 0$.

(c) For all $k > 1$ and $0 \leq t_1 < t_2 < \cdots < t_k$, $(W_{t_1}, W_{t_2} - W_{t_1}, \cdots, W_{t_k} - W_{t_{k-1}})$ are independent random variables.

This is the first step in the construction of a Wiener process.

Hint. Try to write down what should be the measure induced by $(W_{t_1}, W_{t_2}, \cdots, W_{t_k})$.

6. Let $T = [0, \infty)$. A function $R : T \times T \to \mathbb{R}$ is called a positive definite kernel (also called a covariance kernel) if for all $k \geq 1$, $t_1, \cdots, t_k \in T$ and $a_1, \cdots, a_k \in \mathbb{R} \setminus \{0\}$,

$$
\sum_{i=1}^{k} \sum_{j=1}^{k} a_i a_j R(t_i, t_j) > 0.
$$

A stochastic process $\{X_t\}_{t \in T}$ is called a Gaussian process if all of its finite dimensional distributions are Gaussian, i.e. for all $k \geq 1$ and $t_1, \cdots, t_k \in T$,

$$(X_{t_1}, \cdots, X_{t_k})$$

is a multivariate Normal random variable.

Let R be a positive definite kernel. Show that there is a Gaussian process X_t defined on some probability space such that $E(X_t) = 0$ for all $t \in T$ and $\text{cov}(X_t, X_s) = R(t, s)$ for all $s, t \in T$.

Hint. Exactly the same hint as 5.