1. Suppose \(X_1, X_2, X_3 \) have mean \((\mu_1, \mu_2, \mu_3) \) and covariance matrix \(\Sigma = \begin{pmatrix} 1 & \rho & \rho^2 \\ \rho & 1 & 0 \\ \rho^2 & 0 & 1 \end{pmatrix} \).

Show that the conditional distribution of \((X_1, X_2) \) given \(X_3 \) has mean \((\mu_1 + \rho^2(X_3 - \mu_3), \mu_2) \) and covariance matrix \(\begin{pmatrix} 1 - \rho^4 & \rho \\ \rho & 1 \end{pmatrix} \).

2. If \(X \sim \text{MVN}_p(\mu, \Sigma) \) and \(Q \Sigma Q^T \sim q \times q \) is nonsingular, then given \(QX = q \), show that the conditional distribution of \(X \) is normal with mean \(\mu + \Sigma Q^T (Q \Sigma Q^T)^{-1}(q - Q\mu) \) and (singular) covariance matrix \(\Sigma - \Sigma Q^T (Q \Sigma Q^T)^{-1}Q\Sigma \).

3. If \(M \sim \text{W}_p(\Sigma, m) \), show that \(E(M^{-1}) = \frac{\Sigma^{-1}}{m/p-1} \).

4. (a) Consider the hypothesis \(H_0 : \mu = k\mu_0 \) with \(\Sigma \) known (in other words, the hypothesis is that \(\mu \) is some unknown multiple \(k \) of a given vector \(\mu_0 \)). Show that under \(H_0 \), the MLE of \(k \) is \(\hat{k} = \mu_0^T \Sigma^{-1} X / \mu_0^T \Sigma^{-1} \mu_0 \) where \(X \) is the mean of independent \(X_1, \ldots, X_n \), each \(\text{MVN}_p(\mu, \Sigma) \). Also show that the LRT statistic \(\lambda = \frac{L_0}{L_1} \) satisfies

\[
-2 \log \lambda = n \bar{X}^T \Sigma^{-1} (\Sigma - (\mu_0^T \Sigma^{-1} \mu_0)^{-1} \mu_0 \mu_0^T) \Sigma^{-1} \bar{X}.
\]

Deduce that the exact distribution of \(-2 \log \lambda \) is \(\chi^2_{p-1} \) when \(H_0 \) is true.

(b) Now consider the hypothesis \(H_0 : \mu = k\mu_0 \) with \(\Sigma \) unknown. In this case the MLE of \(k \) under \(H_0 \) is \(\hat{k} = \mu_0^T S_0^{-1} \bar{X} / \mu_0^T S_0^{-1} \mu_0 \) (you can assume this without proof). With \(d = \bar{X} - k\mu_0 \), show that

\[
-2 \log \lambda = n \log (1 + d^T S_0^{-1} d),
\]

\[
d^T S_0^{-1} d = \bar{X}^T S_0^{-1} (S_0 - (\mu_0^T S_0^{-1} \mu_0)^{-1} \mu_0 \mu_0^T) S_0^{-1} \bar{X}.
\]

Hence show that the exact distribution of \((n - 1)d^T S_0^{-1} d \) is \(T^2_{p-1}(n-1) \).

5. Assume we have a sample of size \(n \) from \(X_i = (X_i^{(1)}, X_i^{(2)}, \ldots, X_i^{(p)}) \sim \text{MVN}_p(\mu, \Sigma) \).

(a) Show that the LRT for the hypothesis that \(X_i^{(1)} \) is uncorrelated with \((X_i^{(2)}, \ldots, X_i^{(p)}) \) is given by \(\lambda = \frac{L_0}{L_1} = (1 - R^2)^{n/2} \) where \(R^2 = s_{11}^{-1} s_{12} s_{22}^{-1} s_{21} \); here \(S = \begin{pmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{pmatrix} \).

(b) Consider the null hypothesis that \(\Sigma \) has entries \(\sigma^2 \) on the diagonal and \(\rho \sigma^2 \) off the diagonal. Let \(S \) be the sample covariance matrix, \(v \) the average of the diagonal entries of \(S \) and \(vr \) the average of the off-diagonal entries. Show that the LRT is

\[
\lambda = \left(\frac{|S|}{v^p (1 - r)^{p-1} (1 + (p-1)r)} \right)^{n/2}.
\]
Some Hints

Hints on Question 4(b)

The question as stated in Mardia, Kent and Bibby refers to two pieces of theory we have not done in class. Therefore, I am repeating those here.

First, I show the derivation of the formula for \hat{k} (MKB, page 106): this is actually a bit more involved than just substituting S_0 for Σ in the formula derived in (a). Based on (a) and substituting $\hat{\Sigma}$, we have $\hat{k} = X^T \Sigma^{-1} \mu_0 / \mu_0^T \Sigma^{-1} \mu_0$. Meanwhile, the equation for $\hat{\Sigma}$ assuming $\hat{\mu}$ known is

$$\hat{\Sigma} = S_0 + (\bar{X} - \hat{\mu})(\bar{X} - \hat{\mu})^T$$

(this comes down to minimizing $\log|\Sigma| + \text{tr}\{S_0 + (\bar{X} - \hat{\mu})(\bar{X} - \hat{\mu})^T\}$ and the solution to that comes from the same argument given in class for the MLE of Σ when μ is unconstrained). The problem is to show these two equations are satisfied simultaneously when S_0 is substituted for $\hat{\Sigma}$ in the formula for \hat{k}. But if we simultaneously premultiply (1) by $\hat{\Sigma}^{-1}$ and postmultiply by S_0^{-1}, then

$$S_0^{-1} = \hat{\Sigma}^{-1} + \hat{\Sigma}^{-1}(\bar{X} - \hat{\mu})(\bar{X} - \hat{\mu})^T S_0^{-1}$$

Now premultiply (2) by μ_0^T: we have $\mu_0^T \hat{\Sigma}^{-1}(\bar{X} - \hat{\mu}) = 0$ from the formula for $\hat{\mu} = \hat{k}\mu_0$. Therefore $\mu_0^T S_0^{-1} = \mu_0^T \hat{\Sigma}^{-1}$, and it then follows that the two alternative forms of \hat{k} are the same.

Second, there is a piece of theory for testing a constrained hypothesis about μ in the case that Σ is unknown (MKB pp. 132–133). Suppose we want to test the null $H_0 : R\mu = r$ where R is a $q \times p$ constraint matrix and r is given. In this case

$$-2\log\lambda = n \log(1 + d^T S_0^{-1} d)$$

where $d = S_0 R^T (RS_0 R^T)^{-1} (R\bar{X} - r)$. Then

$$(n-1)d^T S_0^{-1} d = (n-1)(R\bar{X} - r)^T (RS_0 R^T)^{-1} (R\bar{X} - r)$$

where $R\bar{X} \sim MVN_q(r, n^{-1} R\Sigma R^T)$ independently of $nRS_0 R^T = (n-1)RSR^T \sim W_q(R\Sigma R^T, n-1)$ using Prop. 4 of the notes. Therefore, by definition of Hotelling’s T^2, (3) has distribution $T_{n-1}^2(q)$.

Hints on Question 5

(a) If $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$ then

$$|A| = |A_{11}| \cdot |A_{22} - A_{21} A_{11}^{-1} A_{12}| = |A_{22}| \cdot |A_{11} - A_{12} A_{22}^{-1} A_{21}|.$$

(b) Let I be the $p \times p$ identity matrix, J the $p \times p$ matrix of ones. If $E = (1 - \rho)I + \rho J$ is a matrix with 1 on the diagonal and ρ in all off-diagonal entries, then $|E| = (1 - \rho)^{p-1}(1 - \rho + p\rho)$ and $E^{-1} = \frac{1}{1-\rho} \left(I - \frac{\rho}{1-\rho+p\rho} J \right)$.

2