41. We neglect air resistance, which justifies setting \(a = -g = -9.8 \text{ m/s}^2 \) (taking down as the \(-y\) direction) for the duration of the fall. This is constant acceleration motion, which justifies the use of Table 2-1 (with \(\Delta y \) replacing \(\Delta x \)).

(a) Starting the clock at the moment the wrench is dropped (\(v_0 = 0 \)), then \(v^2 = v_0^2 - 2g\Delta y \) leads to

\[
\Delta y = \frac{(-24)^2}{2(9.8)} = -29.4 \text{ m}
\]

so that it fell through a height of 29.4 m.

(b) Solving \(v = v_0 - gt \) for time, we find:

\[
t = \frac{v_0 - v}{g} = \frac{0 - (-24)}{9.8} = 2.45 \text{ s}.
\]

(c) SI units are used in the graphs, and the initial position is taken as the coordinate origin. In the interest of saving space, we do not show the acceleration graph, which is a horizontal line at \(-9.8 \text{ m/s}^2\).