43. We neglect air resistance for the duration of the motion (between “launching” and “landing”), so \(a = -g = -9.8 \text{ m/s}^2 \) (we take downward to be the \(-y\) direction). We use the equations in Table 2-1 (with \(\Delta y \) replacing \(\Delta x \)) because this is \(a = \text{constant} \) motion.

(a) At the highest point the velocity of the ball vanishes. Taking \(y_0 = 0 \), we set \(v = 0 \) in \(v^2 = v_0^2 - 2gy \), and solve for the initial velocity: \(v_0 = \sqrt{2gy} \). Since \(y = 50 \text{ m} \) we find \(v_0 = 31 \text{ m/s} \).

(b) It will be in the air from the time it leaves the ground until the time it returns to the ground \((y = 0)\). Applying Eq. 2-15 to the entire motion (the rise and the fall, of total time \(t > 0 \)) we have

\[
y = v_0 t - \frac{1}{2}gt^2 \implies t = \frac{2v_0}{g}
\]

which (using our result from part (a)) produces \(t = 6.4 \text{ s} \). It is possible to obtain this without using part (a)’s result; one can find the time just for the rise (from ground to highest point) from Eq. 2-16 and then double it.

(c) SI units are understood in the \(x \) and \(v \) graphs shown. In the interest of saving space, we do not show the graph of \(a \), which is a horizontal line at \(-9.8 \text{ m/s}^2\).