49. The speed of the boat is constant, given by \(v_b = d/t \). Here, \(d \) is the distance of the boat from the bridge when the key is dropped (12 m) and \(t \) is the time the key takes in falling. To calculate \(t \), we put the origin of the coordinate system at the point where the key is dropped and take the \(y \) axis to be positive in the \textit{downward} direction. Taking the time to be zero at the instant the key is dropped, we compute the time \(t \) when \(y = 45 \text{ m} \). Since the initial velocity of the key is zero, the coordinate of the key is given by \(y = \frac{1}{2}gt^2 \). Thus

\[
t = \sqrt{\frac{2y}{g}} = \sqrt{\frac{2(45 \text{ m})}{9.8 \text{ m/s}^2}} = 3.03 \text{ s}.
\]

Therefore, the speed of the boat is

\[
v_b = \frac{12 \text{ m}}{3.03 \text{ s}} = 4.0 \text{ m/s}.
\]