11. The diagram shows the displacement vectors for the two segments of her walk, labeled \vec{A} and \vec{B}, and the total ("final") displacement vector, labeled \vec{r}. We take east to be the $+x$ direction and north to be the $+y$ direction. We observe that the angle between \vec{A} and the x axis is 60°. Where the units are not explicitly shown, the distances are understood to be in meters. Thus, the components of \vec{A} are $A_x = 250 \cos 60^\circ = 125$ and $A_y = 250 \sin 30^\circ = 216.5$. The components of \vec{B} are $B_x = 175$ and $B_y = 0$. The components of the total displacement are $r_x = A_x + B_x = 125 + 175 = 300$ and $r_y = A_y + B_y = 216.5 + 0 = 216.5$.

(a) The magnitude of the resultant displacement is

$$|\vec{r}| = \sqrt{r_x^2 + r_y^2} = \sqrt{300^2 + 216.5^2} = 370 \text{ m}.$$

(b) The angle the resultant displacement makes with the $+x$ axis is

$$\tan^{-1} \left(\frac{r_y}{r_x} \right) = \tan^{-1} \left(\frac{216.5}{300} \right) = 36^\circ.$$

(c) The total distance walked is $d = 250 + 175 = 425$ m.

(d) The total distance walked is greater than the magnitude of the resultant displacement. The diagram shows why: \vec{A} and \vec{B} are not collinear.