13. We write $\vec{r} = \vec{a} + \vec{b}$. When not explicitly displayed, the units here are assumed to be meters. Then $r_x = a_x + b_x = 4.0 - 13 = -9.0$ and $r_y = a_y + b_y = 3.0 + 7.0 = 10$. Thus $\vec{r} = (-9.0 \text{ m}) \hat{i} + (10 \text{ m}) \hat{j}$. The magnitude of the resultant is

$$r = \sqrt{r_x^2 + r_y^2} = \sqrt{(-9.0)^2 + (10)^2} = 13 \text{ m}.$$

The angle between the resultant and the $+x$ axis is given by $\tan^{-1} (r_y/r_x) = \tan^{-1} 10/(-9.0)$ which is either -48° or 132°. Since the x component of the resultant is negative and the y component is positive, characteristic of the second quadrant, we find the angle is 132° (measured counterclockwise from $+x$ axis).