DRUG LOCALIZATION IN TISSUES AND CELLS

RECEPTOR MICROSCOPIC AUTORADIOGRAPHY - METHOD MANUAL

A Basis for Tissue and Cellular Pharmacokinetics,
Drug Targeting, Delivery, and Prediction

By

Walter E. Stumpf

University of North Carolina and International
Institute of Drug Distribution, Cytopharmacology
and Cytotoxicology (IIDDCC), Chapel Hill, NC
Acknowledgements:

I thank Dr. Yasuo Nishii and Dr. Noboru Kubodera of Chugai Pharmaceutical Company, Tokyo, and Dr. Telma M. T. Zorn, University of São Paulo, for their support and appreciation of target tissue identification in drug development and hormone research.

Contact Information:

Dr. Walter E. Stumpf
2612 Damascus Church Rd.
Chapel Hill, NC 27516 / USA
Tel/Fax: (919) 942-8646
E-mail: <stumpfwe@email.unc.edu>
TABLE of CONTENTS

Preface

Manual

Chapter 1 Introduction

- A. General Considerations
- B. History
 1. Macro Autoradiography – Apposition (Sandwich) Techniques
 2. Receptor Microscopic (Micro) Autoradiography

Chapter 2 Design and Introduction of Experiments

- A. Planning
- B. Pilot Studies
- C. Introductory Experiment To Establish the Autoradiographic Procedure

Chapter 3 Emulsion Coating of Slides

- A. General Consideration
- B. Dipping Procedure
- C. Control of Emulsion Background
 1. Initial Background Count
 2. Experimental Background Count
Chapter 4 Radiolabeled Compounds

A. Choice of Radioisotope
 1. Tritium (3H)
 2. Radiocarbon (14C)
 3. Radioiodine (125I)

B. Purity of Labeled Compound
C. High Specific Activity
D. Dose and Route of Application
E. Characterization of Radioactivity in Tissues and Specificity of Binding

Chapter 5 Procurement of Tissue

A. Arrangements
B. Dissection and Placement of Samples
C. Samples for Parallel Alternate Studies

Chapter 6 Freezing of Tissue, Freeze-Mounting, and Storage

A. Freezing and Control of Ice Crystal Formation
B. Freezing Procedure
C. Freeze-Mounting
D. Modifications of Freezing Procedure

Chapter 7 Frozen Tissue Sectioning and Thaw-Mounting

A. Transfer of Frozen Specimen from Storage to Microtome-Cryostat
B. Orientation of Specimen and Trimming
C. Cutting Temperature
D. Frozen Sectioning
E. Frozen Section Thaw-Mounting on Emulsion-Coated Slide
F. Consideration of Modifications
Chapter 8 Photographic Exposure and Development

A. Storage of Slides in Desiccator Boxes
B. Exposure Time
C. Photographic Development and Fixation
D. Histological Fixation

Chapter 9 Staining

A. General Considerations
B. Recommended Stains
 1. Methylene Blue – Basic Fuchsin Stain (MBBF)
 2. Methyl Green – Pyronin Stain (MGP)

Chapter 10 Evaluation of Autoradiograms

A. Characterization of the Chemical Nature of Localized Radioactivity
B. Relationships Between Silver Grains and Tissue Structures
C. Reproducibility and Authenticity of Results
D. Problems of Interpretation of Results
E. Importance of Pictorial Evidence

Chapter 11 Quantification

A. General Considerations
B. Special Considerations
 1. Identification of Cell Types
 2. Cell (Compartment) Size and Density of Silver Grains
 3. Tissue Self-Absorption of Radiation
 4. Selective Evaluation of Labeled Cells, Compartments
 5. Number of Cells
 6. Subtraction of Background Counts
 7. Characterization of Radioactivity Associated with Certain Tissue Structures
C. Hierarchy of Receptor Binding to Different Target Tissues
D. Estimation of Number of Molecules
Chapter 12 Colocalization – Combined Autoradiography and Immunohistochemistry

A. General Considerations
B. Procedure
 1. Fixation of Exposed Slides Prior to Autoradiographic Development
 2. Autoradiographic Development
 3. Immunocytochemical Staining

Chapter 13 In Vitro Experiments

A. General
B. Diffusion
C. Handling Tissue Slices
D. Cell Suspensions
 1. Spreads
 2. Pellets

Chapter 14 Artifacts

A. General
B. Multiple Sources of Possible Artifacts
C. Artifacts Related to In Vitro Incubation

Chapter 15 Controls

A. Controls Against Positive Chemography and Mechanical Artifacts
B. Controls Against Negative Chemography
C. Controls Without Radioactivity
D. Competition Controls for Characterization of Localized Radioactivity
E. External Positive “Controls”
F. Controls by Dry-Mounting for Thaw-Mounting
Chapter 16 Alternate Procedures for Diffusible Compounds

A. General
B. Dry-Mounting of Frozen Sections
C. Dry-Mounting of Freeze-Dried Sections
D. Problems with Hard and Spongy Tissues
 1. Frozen Section Thaw-Mounting
 2. Frozen Section Sectioning After Backing with Scotch tape or Saran wrap
 3. Frozen Sectioning of Acrylamide-Infiltrated Tissue
E. Regional ‘High Resolution’ Autoradiography
F. In Vitro Labeling Autoradiography

Addendum

1. Chronology of Development of Techniques, Applications, and Discoveries

 Highlights
 Timeline of Development of Method, Related Discoveries and New Concepts

2. References for Autoradiography of Diffusible Compounds

 Selected Publications by the Author
 Additional References

3. Examples of Autoradiograms

4. About the Author
Preface

Corpora non agunt nisi in loco

Knowledge about in vivo sites of receptor association and deposition is necessary for the understanding of mechanisms of action of drugs and any bioactive compounds. Detection and characterization of specific targets require methods with high sensitivity and high resolution. Radioassays with excised organs or pieces of tissue and whole body autoradiography – commonly used in pharmacokinetic studies – inform about high capacity-low specificity sites, but rarely about receptor-related high specificity low capacity sites. Information is lacking about in vivo binding to receptors, related half life, and hierarchy of affinities to receptors in different target cell populations. Such in vivo information is, however, essential. It cannot be derived from measurements of compound levels in whole organs or pieces of organs, blood and other body fluids, whose concentrations and kinetics may be quite different from those at receptor sites. Also, results from in vitro experiments, while helpful, differ and cannot substitute for in vivo information.

Receptor micro autoradiography is an indispensable basis for tissue and cellular pharmacokinetics. It combines qualitative and quantitative information on morphology and labeled-compound deposition and specific binding. It provides cellular-subcellular resolution in the direct context of organ and tissue structures, being at once detailed and integrative. Its high predictive value and advantages for drug targeting have been documented.

By contrast, various autoradiographic techniques recommended in the literature and common in practice are not suitable for the localization of diffusable compounds. Most of these techniques lack not only resolution, but also rigorous testing against translocation and loss. Data derived from such procedures often are unspecific and may even yield artifacts that can be mistaken as results.

The method outlined here has been carefully designed and tested. Loss and translocation of radiolabeled compounds are avoided and tissue structure is preserved. It has a long track record of success.

This Manual is based on several decades of experience. It provides detailed instructions. If followed, important new information that is otherwise difficult or impossible to obtain will be gained.

This book is, however, not only a method manual. It is also a personal account of a dogged pursuit that brought success through the systematic use of the newly developed techniques, often with unexpected and startling results that led to new understandings and concepts.