Statement of Teaching Philosophy
J. Michael Terry

March 2010

I. General Philosophy

I believe that I will have been a successful teacher of linguistics if my students leave my classes A) having gained an understanding of the basic problems and core theories that define the field, B) having developed facility with the formalism that is used to both shape and communicate ideas within the field, and C) understanding how A) and B) fit together in the construction of arguments that move the field forward. With its deep connections to philosophy and logic as well as anthropology and psychology, linguistics is a field that progresses as much—if not more—through argumentation as it does through experimentation. Seeing students through to the point where they can evaluate the linguistic arguments of others and, eventually, construct their own is the ultimate goal of my teaching.

My teaching philosophy is rooted in this belief. Consequently, I accept that my responsibility as teacher is to lead students through these three steps, one by one, in such a way that they become confident in their own abilities. What follows is a discussion of the strategies I use to get them there, and why.

A) Leading Students to a Firm Understanding of Basic Problems and Core Theories

I was led to understand the absolute necessity of meeting students where they are as a first step in introducing them to the field in a setting quite apart from linguistics. It came when I was an Engineering student, through a conversation with a professor who taught Machine Design. We were talking about teaching and my plans at that time to teach Mechanical Engineering. He related his experience with Asian students, who, doing poorly in his and other Mechanical Engineering classes, subsequently dropped that major to enroll in Electrical Engineering where they then excelled. This puzzled the professor because it did not conform to any of the common stereotypes about either the students or the sub-disciplines of Engineering. Stereotypically, Asian students were widely supposed to be the smartest students, and, in the pecking order of the Engineering fields, Electrical Engineering, being the more abstract, was supposed to be the most difficult of majors. How could it be, then, that so many Asian students were doing so poorly in Mechanical Engineering? How could it be that anyone doing poorly in Mechanical Engineering could excel in Electrical Engineering? These questions confounded him until he talked to the students leaving his classes, and came to understand that most Mechanical Engineering professors, himself included, relied too heavily on the metaphor of the car as a mainstay in their teaching. When things got complicated and abstract for the students in their classes, they routinely used the simile “it’s just like it works in your car”. Through his conversations with the departing students, my professor realized that most of them did not come from cultures in which they themselves owned cars. They did not
have the experience of fixing up old, beat up cars and learning what was under the hoods. So the analogy meant nothing to them, and, failing to connect, the students did not fare well. In the more abstract Electrical Engineering classes, the favored analogies were more culturally neutral, and the Asian students excelled.

The lesson that I took from this, and have tried to make a part of my teaching, is that if I am to be successful, I must meet the student where s/he is; I must try to go to where the student is already comfortable to find the right metaphors for communicating ideas. In this, I see teaching much as I see writing: one has something to communicate, and a near infinite number of ways that it can be done; ultimately, though, the best way will be the way that starts in a place familiar to the audience.

How, then, does one find the language for successful communication? My approach is to use informal surveys and class discussions, as well as my class and office hours to get to know what my students already know. Then, I undertake to pinpoint the areas where they are having difficulties in their work. Most often I find that by using what I have learned about what they know to find a useful language with which to address those problem areas, I am better able to get through to them. Understanding both what they know and where they are having difficulties helps me to help them.

While I came to this method largely through a conversation with an engineering professor, I take still another lesson from the fact that I am no longer an engineer. Although I am now a linguist, studying engineering taught me the skills to be a problem solver. I believe, especially in undergraduate classes, that if I teach and the way that I teach give my students the skills necessary for investigating data and solving linguistic problems, they will discover that these same skills can be used beyond linguistics. From this follows a second sense in which I try to meet students where they are. In planning classes, I try to keep in mind students' broader interests and draw connections between them and linguistic theory wherever possible.

B) Leading Students in Developing Facility with Linguistic Formalism

For many students, the real sticking point in the process of learning linguistics is the second of the stages I initially outlined: developing a facility with the formalism used in the field. This is particularly true in the semantics classes that I teach, as in them, students must learn to produce semantic computations of sentences, a process that requires translating natural language into mathematical forms. This can be intimidating for a large number of students, particularly those who have anxieties about mathematics. Many find that there is a stark contrast between the excitement that they felt having come to understand sketches of big ideas of the field and the dread that accompanies their being faced with the rigors of their formalism for the first time. To my mind, more often than not, their struggles reveal misunderstandings about the role of formalism and the learning process itself, rather than any lack of linguistic or mathematical ability. For these students the formalism is disconnected from the ideas.

Much of what I believe about this problem, how it affects students, and how it can be remedied can be summed up in the advice that I give them about learning to do semantic computations in particular and mathematical problems in general. As an ineffective way of studying (particularly in preparing for tests), students often read over their notes or the
chapter in a text book, and then turn, much too quickly, to trying to do all of the problems at the end of the book. They do this in the hope that they will see all of the kinds of problems that they might face when being tested. What this method will not give them is an understanding of how the mathematical formalism is being used – the connection between the ideas and the formalism. These students end up trying to substitute memorization and pattern matching for understanding and true learning. The advice I give in all my classes is not only to do fewer practice problems, but to do them differently. I tell students to study every line of every example problem to make sure that they first, can understand the problem as presented, second, can do the problem by themselves, and finally, can understand the underlying principles so well that if some small change were made in the problem, they could still recognize it as the same kind of problem - one that at its heart asks them think in the same terms. I encourage students to have the patience and courage to do fewer problems better. By studying in this way, they not only learn to manipulate the formalism, but they become clear as to what they are missing in the big ideas. They learn to actually use the formalism and come to see why the formalism is used in the field.

C) Leading Students to Understand and Construct Linguistic Arguments

My ultimate goal as a teacher is to see students through to the point where they can understand and evaluate the linguistic arguments of others, and construct well formed, convincing arguments of their own. I emphasize to all my students that the field of linguistics progresses through the arguments of it practitioners, and in all of my classes I spend a great deal of time talking about argumentation. Once students gain command of some basic theories and formalism of the field, they are in a position to see how these come together in the form of arguments that push the field forward. In introductory classes, I often outline key arguments for students prior to their encountering them in a reading, and follow up by later having them explain those arguments in class and do homework focused on the argumentation. In more advanced classes, I often assign the outlining of the principal arguments of some primary source reading as a first homework assignment on the subject of the reading. I encourage students to question the arguments that they are presented with. After explicating an argument, I often begin a class discussion by asking if the class can “poke holes” in it. I see this process of looking for weaknesses in arguments not only as an exercise in critical thinking, but as an important first step in constructing arguments of their own.

II. Implementing My Teaching Philosophy in the Classroom

In section I, I outlined my general teaching philosophy. What follows is how that philosophy under-girds my teaching at three different levels:

A) Introductory Undergraduate Classes

In introductory undergraduate classes, such as Introduction to Language, my primary goal is to introduce the big problems that define the field: How can one understand sentences one has never heard before? What does one need to know to “know a
language”? Here I show students how linguists attempt to answer these and other important questions. While I do introduce some formal structures, the level of formalization introduced in these classes is far less than in more advanced classes; therefore much of the attention I give to argumentation is done without the use of formal structures.

B) Advanced Undergraduate and Introductory Graduate Classes

The assumption underlying my advanced undergraduate and introductory graduate courses is that students enrolled in them are already familiar with most of the relevant core ideas of linguistics. In these courses, then, I focus on strengthening the students’ ability to work with formal structures to see how they capture the key ideas of the field. For example, in my Introduction to Semantics class (LING 537), which is open to both graduate and advanced undergraduate students, we spend the semester developing a formal semantic system. Throughout the semester the system is continually revised to meet the challenges of new data. Among other things, students do a great number of exercises to test their understanding of what the formalism captures.

In the Formal Approaches to African American English (LING 310) course that I developed, I begin by getting students to investigate the very notion of “a language”. Building on a natural interest in different “languages” and “dialects”, I lead them to consider why formal linguistics operates at the level of grammars rather than languages or dialects, and to re-examine the role of formal structures in the syntax and semantics that they were introduced to in earlier classes. Steadily reinforcing and building on material from Introduction to Linguistics – the course prerequisite – this investigation leads to consideration of different definitions of African American English and ultimately formal analyses of key aspects of African American English grammar. I make a conscious effort to meet the students where they are, building on what they have already encountered in earlier coursework.

Teaching Language Deficits and Cognition (LING 547), I have found that many, if not most, of the students who take this course plan to become Speech Language Pathologists rather than Linguists. These students are unsurprisingly interested in clinical practice. My approach to the course builds on this interest and uses language testing as a bridge between their natural interest in clinical practice and the linguistic theory that is the central focus of the course. I teach this course from the perspective that experiments are to linguistic theory what tests are to clinical practice. I make clear that designing and interpreting language tests require many of the same skills and reasoning used in the design and interpretation of experiments in linguistic theory. As a final project, students are given a patient’s test results from a language and cognition screening test. They are then asked to form a hypothesis about what could be wrong with the patient and develop their own test question to help confirm or rule out their hypothesis. The test question they develop must derive from the models of cognition and linguistic competence that they have studied in class, and their principal job is to make that connection clear. Here the second notion of meeting students where they are, as outlined above, has played a large role in my course design and teaching. Thinking about students’ broader interests has greatly affected the way that I introduce core ideas and linguistic formalism in this course.
C) Advanced Graduate Classes

The overriding assumption of the more advanced graduate classes is that, by now, students are well acquainted with the core ideas of the field as well as with the formalism used to communicate those ideas. In these classes my goal is to prepare students to actively engage the field, and my focus is almost exclusively aimed at getting them to think critically and to construct their own linguistic arguments. In these courses I place greater emphasis on reading primary literature, and my assignments include responding critically to those readings and building alternative accounts.