RENEWAL DEMANDS.

- Demands occur one at a time according to a renewal process.
- Multiple outstanding orders allowed.
- Inventory Position = Inventory on hand - Inventory on backorder + Inventory on order.
- Order of size \(Q = S - s \) is placed whenever the inventory position falls to \(s \).
- \(T = \) fixed lead time, i.e. order placed at time \(t \) will appear at time \(t + T \). Independent of order size.
- \(K = \) ordering cost.
- \(h = \) holding cost.
- \(p = \) cost of a back ordered demand per item per unit time.

OBJECTIVE.

Determine \(S \) and \(s \) to minimize the long run rate at which ordering, holding and back ordering costs are incurred.
ANALYSIS.

• \(D(t) = \) demand over \((0, t] \).
• \(D(u, t) = \) demand over \((u, t], t \geq u \).
• Assumption: \(\{D(t), t \geq 0\} \): A renewal process with common inter renewal time cdf \(F(\cdot) \) and mean \(\tau \).
• \(\{D(u, u + t), t \geq 0\} \): A delayed renewal process.
• As \(u \to \infty \), \(\{D(u, u + t), t \geq 0\} \) tends to an equilibrium renewal process.
• \(V(t) = \) Inventory on hand - inventory on backorder at time \(t \).
• Inventory on hand at time \(t = \max\{0, V(t)\} \).
• Inventory on backorder at time \(t = \max\{0, -V(t)\} \).
• \(I(t) = \) Inventory position at time \(t \).
• \(I(t) \in \{s + 1, s + 2, ..., S\} \).
• \(V(t) = I(t - T) - D(t - T, t), \) for \(t \geq T \).
• \(I(t) \) and \(D(t, t + u) \) are independent if \(t \) is a demand arrival period, and also in the limit as \(t \to \infty \).
• Hence we study \(\{I(t), t \geq 0\} \) first.
LIMITING BEHAVIOR OF $I(t)$.

- $\{I(t), t \geq 0\}$ is a regenerative process on $\{s + 1, s + 2, ..., S\}$.
- I regenerates whenever it hits S.
- Expected cycle length $= (S - s)\tau$.
- Expected time spent in state j during a cycle $= \tau$, for $s + 1 \leq j \leq S$.
- Assume F is aperiodic. Then $I(t)$ has a limiting distribution.
- $p_j = \lim_{t \to \infty} P(I(t) = j) = \frac{\tau}{(S - s)\tau} = \frac{1}{S - s}$.

Thus the inventory position is uniformly distributed over $\{s + 1, ..., S\}$.
LIMITING BEHAVIOR OF $V(t)$.

- As $t \to \infty$, the distribution of $D(t-T, t)$ approaches that of $D_e(T)$, where $\{D_e(t), t \geq 0\}$ is the equilibrium renewal process.
- $F_e(t) = \frac{1}{T} \int_0^t (1 - F(u))du$.
- $F_e \ast F(t) = \int_0^t F_e(t-u) dF(u)$ is the convolution of F_e and F.
- $F^{*k}(t)$ is the k-fold convolution of F with itself.
- $q_0 = P(D_e(T) = 0) = 1 - F_e(T)$.
- $q_j = P(D_e(T) = j) = F_e \ast F^{*(j-1)}(T) - F_e \ast F^*(T)$.
- The limiting distribution of V can now be computed as a convolution of two independent random variables:
 \[V(\infty) = I(\infty) - D_e(T). \]
- Thus, for $j \leq S$:
 \[\pi_j = P(V(\infty) = j) = \sum_{i=s+1}^{S} \frac{1}{S} q_{i-j}, \]
 where we use $q_j = 0$ if $j < 0$.

4
LONG RUN COST RATE.

- Ordering cost rate = \(\frac{K}{(S-s)\tau} \).
- Holding cost rate = \(\sum_{j=0}^{S} jh\pi_j \).
- Backorder cost rate = \(\sum_{j=1}^{\infty} pj\pi_{-j} \).
- Total cost rate =

\[
C(S, s) = \frac{K}{(S-s)\tau} + \sum_{j=0}^{S} jh\pi_j + \sum_{j=1}^{\infty} pj\pi_{-j}.
\]

- Numerically compute \(S \) and \(s < S \) that minimize the above cost rate function.
BATCH-RENEWAL DEMANDS.

- The demands occur one batch at a time.
- The batch sizes are iid with common pdf ϕ, and cdf Φ.
- The batches arrive according to a renewal process with common inter renewal time cdf $F(\cdot)$ and mean τ.
- The batch sizes are independent of the batch arrival process.
- Multiple outstanding orders allowed.
- Inventory Position = Inventory on hand - Inventory on backorder + Inventory on order.
- Whenever the inventory position falls below s an order is placed to bring the inventory upto S. (The order size may vary.)
- T = fixed lead time, i.e. order placed at time t will appear at time $t + T$. Independent of order size.

OBJECTIVE.

Determine S and s to minimize the long run rate at which ordering, holding and back ordering costs are incurred.
ANALYSIS.

- $D(t) =$ demand over $(0, t]$.
- $D(u, t) =$ demand over $(u, t]$, $t \geq u$.
- Assumption: $\{D(t), t \geq 0\} =$ A renewal reward process with common inter renewal time cdf $F(\cdot)$ and mean τ, and reward density ϕ.
- $\{D(u, u+t), t \geq 0\} =$ A delayed renewal reward process.
- As $u \to \infty$, $\{D(u, u + t), t \geq 0\}$ tends to an equilibrium renewal reward process.
- $V(t) =$ Inventory on hand - inventory on backorder at time t.
- Inventory on hand at time $t = \max\{0, V(t)\}$.
- Inventory on backorder at time $t = \max\{0, -V(t)\}$.
- $I(t) =$ Inventory position at time t.
- $I(t) \in [s, S]$.
- $V(t) = I(t - T) - D(t - T, t)$, for $t \geq T$.
- $I(t)$ and $D(t, t + u)$ are independent if t is a demand arrival period, and also in the limit as $t \to \infty$.
- Hence we study $\{I(t), t \geq 0\}$ first.
LIMITING BEHAVIOR OF $I(t)$.

- $\{I(t), t \geq 0\}$ is a regenerative process on $[s, S]$. It regenerates whenever it hits S.
- X_n = the nth inter-batch arrival time.
- Y_n = size of the nth batch.
- $N(t)$ = renewal process generated by $\{Y_n, n \geq 1\}$.
- Let $M(t) = E(N(t))$ be the renewal function of N:
 \[
 M(t) = \sum_{j=1}^{\infty} \Phi^*(t).
 \]
- Suppose $I(0) = S$. Order is placed at time
 \[
 \min\{t \geq 0 : D(t) > S - s\} = \sum_{n=1}^{N(S-s)+1} X_n.
 \]
- Result from renewal theory
 \[
 E\left(\sum_{n=1}^{N(S-s)+1} X_n \right) = (1 + M(S - s))\tau.
 \]
- Expected cycle length = $(1 + M(S - s))\tau$.
- $m(x)dx$ = probability that there is a renewal in the interval $(x, x + dx)$.
- Expected time spent in state $(x, x + dx)$ during a cycle = $\tau m(S - x)dx$, for $s \leq x \leq S$.
- Assume F is aperiodic. Then $I(t)$ has a limiting density:
 - $p(x) = \frac{m(S-x)}{1+M(S-s)}$.

8
LIMITING BEHAVIOR OF $V(t)$.

- As $t \to \infty$, the distribution of $D(t - T, t)$ approaches that of $D_e(T)$, where $\{D_e(t), t \geq 0\}$ is the equilibrium renewal reward process.
- $q(0) = P(D_e(T) = 0) = 1 - F_e(T)$.
- $q(y)dy = P(D_e(T) \in (y, y + dy))$
 \[= \sum_{j=1}^{\infty} (F_e * F^*(j-1)(T) - F_e * F^j(T)) \phi^*(y)dy.\]

Here $\phi^*(y) = 1$ and
\[\phi^j(y) = \int_{0}^{y} \phi^*(j-1)(y - u) \phi(u)dy, \quad j \geq 1.\]

- The limiting distribution of V can now be computed as a convolution of two independent random variables:
 \[V(\infty) = I(\infty) - D_e(T).\]

- Thus, for $x \leq S$:
 \[\pi(x)dx = P(V(\infty) \in (x, x + dx))\]
 \[= p(x)q(0)dx + \int_{y=s}^{S} p(y)q(x - y)dydx,\]
 where we use $q(y) = 0$ if $y < 0$ and $p(x) = 0$ if $x < s$.

LONG RUN COST RATE.

• Ordering cost rate = \(\frac{K}{1+M(S-s)\tau} \).

• Holding cost rate = \(\int_{x=0}^{S} hx\pi(x)dx \).

• Backorder cost rate = \(\int_{x=0}^{\infty} px\pi(-x)dx \).

• Total cost rate =
 \[C(S, s) = \frac{K}{1+M(S-s)\tau} + \int_{x=0}^{S} hx\pi(x)dx + \sum_{x=0}^{\infty} px\pi(-x)dx. \]

• Numerically compute \(S \) and \(s < S \) that minimize the above cost rate function.
(S - 1, S) INVENTORY POLICIES
BACKORDER CASE.

- $S =$ stock-up-to level.
- Place an order for a replenishment whenever a demand occurs.
- This produces a (s, S) policy with $s = S - 1$.
- Demands arrive according to a PP(λ).
- The lead times are iid with cdf $G(\cdot)$ and mean τ.
- Orders can cross!
- Back ordering allowed.
- $K =$ ordering cost.
- $h =$ holding cost.
- $p =$ cost of a back ordered demand per item per unit time.

OBJECTIVE.

Determine S to minimize the long run rate at which ordering, holding and back ordering costs are incurred.
ANALYSIS.

- \(W(t) = \) Inventory on order at time \(t \).
- Inventory on hand at time \(t = [S - W(t)]^+ \).
- Inventory on back order at time \(t = [W(t) - S]^+ \).
- \(W(t) \) increases by 1 whenever a demand occurs, and decreases by 1 whenever an order arrives.
- Since the arrival process is PP and lead times are iid, \(W(t) \) can be thought of as the number of customers in an \(M/G/\infty \) system at time \(t \).
- Result from queueing theory: The limiting distribution of \(W(t) \) is \(P(\lambda \tau) \), i.e.,

\[
P(W = k) = e^{-\lambda \tau} \frac{(\lambda \tau)^k}{k!} \quad k \geq 0.
\]
- Ordering cost rate = \(\lambda K \).
- Holding cost rate = \(hE([S - W]^+) \).
- Backordering cost rate = \(pE([W - S]^+) \).
- Total cost rate = \(C(S) = \lambda K + hE([S - W]^+) + pE([W - S]^+) \).
- Determine \(S \) to minimize \(C(S) \).
(S − 1, S) INVENTORY POLICIES
LOST SALES CASE.

• S = stock-up-to level.
• Place an order for a replenishment whenever a demand occurs.
• This produces a (s, S) policy with s = S − 1.
• Demands arrive according to a PP(λ).
• The lead times are iid with cdf G(·) and mean τ.
• Orders can cross!
• Stock outs lead to lost sales.
• K = ordering cost.
• h = holding cost.
• p = cost of a lost sale.

OBJECTIVE.

Determine S to minimize the long run rate at which ordering, holding and lost sales costs are incurred.
ANALYSIS.

- $W(t) = \text{Inventory on order at time } t$.
- Inventory on hand at time $t = S - W(t)$.
- Rate at which sales are lost at time $t = \lambda P(W(t) = S)$.
- $W(t)$ increases by 1 whenever $W(t) < S$ and a demand occurs, and decreases by 1 whenever an order is fulfilled.
- Since the arrival process is PP and lead times are iid, $W(t)$ can be thought of as the number of customers in an $M/G/S/S$ system at time t.
- Result from queueing theory: The limiting distribution of $W(t)$ is $P(\lambda \tau)$ truncated at S, i.e.,

$$P(W = k) = \frac{e^{-\lambda \tau} (\lambda \tau)^k}{k!} \left/ \sum_{i=0}^{S} \frac{e^{-\lambda \tau} (\lambda \tau)^i}{i!} \right., \quad 0 \leq k \leq S.$$

- Ordering cost rate $= \lambda(1 - P(W = S))K$.
- Holding cost rate $= hE(S - W)$.
- Lost sales cost rate $= p\lambda P(W = S)$.
- Total cost rate $= C(S) = \lambda(1 - P(W = S))K + hE(S - W) + p\lambda P(W = S)$.
- Determine S to minimize $C(S)$.