Lecture 8

- Introduction to the IS-LM-BP model
- The Keynesian income model
- A numerical example
- The multiplier effect
The Keynesian Income Model

- **Keynesian cross approach:**
 - Identity: \(Y = AE = C + I + G + X - M \) (Diagram)
 - All parts of \(AE \) are functions of \(Y \) \(\Rightarrow Y_e \)
 - Disposable income: \(Y_d = Y - T = C + S \), \(T = tY \)
 - \(C = a + bY_d \) and \(S = -a + (1 - b)Y_d \)
 - \(a = \) autonomous consumption spending, \(b = \) MPC
 - \(I = \bar{I}, \ G = \bar{G}, \ X = \bar{X} \) (Autonomous \(I, G, X \))
 - \(M = \bar{M} \) (autonomous imports) + \(mY \) (induced imports)
 - \(m = \frac{\Delta M}{\Delta Y}, \frac{APM}{APM}, \frac{YEM}{YEM} = \frac{MPM}{APM} \)

- **Leakages and injections approach:**
 - Leakages (money leaving the spending stream): \(S, T, M \)
 - Injections (money entering the spending stream): \(I, G, X \)
 - Equilibrium: \(S + T + M = I + G + X \) (Diagram)
C/A and National Income

- C/A can be summarized as $(X - M)$, including goods and services (C/A in deficit if $X < M$)

- Basic macroeconomic identity:
 \[Y = AE = C + I + G + (X - M) \] (nation)
 \[Y = C + S + T \] (household)

- Understanding the C/A balance
 \[(X - M) = Y - (C + I + G) \] (income - spending)
 \[(X - M) = (S - I) + (T - G) \] (private+public saving)

 \Rightarrow C/A deficit implies the nation is in debt
 \Rightarrow K/A must be in surplus as capital inflow > outflow to finance debt
A Numerical Example

Assumptions:
Induced: \(C = 100 + 0.8 \ Y_d, \ Y_d = Y - T, \ T = 0.25 \ Y, \ M = 20 + 0.1Y, \)
Autonomous: \(I = 180, \ G = 600, \ X = 140 \)

Keynesian cross approach:
- \(C = 100 + 0.8(Y - 0.25Y) = 100 + 0.6Y \)
- \(AE = C + I + G + X - M = 100+0.6Y+180+600+140-(20+0.1Y) \)
- \(AE = 1000 + 0.5Y = Y \Rightarrow \ Y_e = 2000 \)

Leakages and injections approach:
- \(S + T + M = Y-0.25Y-(100+0.6Y)+0.25Y+(20+0.1Y) = -80+0.5Y \)
- \(I + G + X = 180 + 600 + 140 = 920 \)
- \(S + T + M = I + G + X \Rightarrow - 80 + 0.5Y = 920 \Rightarrow \ Y_e = 2000 \)

Current account:
- \(X - M = 140 - (20 + 0.1 \times 2000) = - 80 \)
The Multiplier Effect

- **Autonomous spending multiplier:**
 - Why multiplied?
 The spending stream: \(I \uparrow \rightarrow Y \uparrow \rightarrow C, M \uparrow \rightarrow Y \uparrow \)
 - Definition:
 The multiplier gives the change of equilibrium income as autonomous spending on \(C, I, G, \) or \(X \) is changed, which is \(\Delta Y/\Delta AE_{\text{autonomous}} \)

- **Open-Economy multiplier \((k_0)\):**
 \[
 Y = (a + b(1-t) Y) + I + G + X - (M + mY) = a + (b(1-t) - m)Y + I + G + X - M \]
 \[
 \Rightarrow (1 - b(1-t) + m)Y = a + I + G + X - M \]
 \[
 \Rightarrow k_0 = \Delta Y/\Delta AE_{\text{autonomous}} = 1/ (1 - MPC(1-t) + MPM) \]

- **Foreign repercussions:**
 \(I \uparrow \rightarrow Y \uparrow \rightarrow M \uparrow \rightarrow X^* \uparrow \rightarrow Y^* \uparrow \rightarrow M^* \uparrow \rightarrow X \uparrow \rightarrow Y \uparrow \)